Supplementary Material

A new and different insight into the promotion mechanisms of Ga for carbon dioxide hydrogenation to methanol over Ga doped Ni(211) bimetallic catalyst

Qingli Tang,^{a,b} Wenchao Ji,^b Christopher K. Russell,^c Yulong Zhang,^d Maohong Fan,^{a,e,*} and Zhemin Shen^{b,*}

^a School of Energy Resouces and Departments of Chemical and Petroleum Engineering, University of Wyoming, 1000 East University Avenue, Laramie, 82071, Wyoming Unites States ^bSchool of Environmental Science and Engineering, Shanghai Jiao Tong University, 800

Dongchuan Road, Minhang District, Shanghai, 200240, P.R. China

^c Departments of Civil and Environmental Engineering, Stanford University, Stanford 94305, CA, USA.

^d College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China

^e School of Civil and Environmental Engineering, Georgia Institute of Technology, North Avenue, Atlanta 30332, Georgia United States.

^{*}Corresponding author at: 800 Dongchuan Road, Minhang District, Shanghai 200240, China. E-mail: zmshen@sjtu.edu.cn

¹⁰⁰⁰ E University Ave., Laramie, WY 82071, USA. E-mail: mfan@uwyo.edu

		Ni(211)			Ga-Ni(211)				Ga ₃ Ni ₅ (111)				
No.	reaction	E_a	$E_{_a}^{_{ZPE}}$	ΔE	ΔE^{ZPE}	E_a	E	ΔE	ΔE^{ZPE}	E_a	E ^{ZPE}	ΔE	ΔE^{ZPE}
R1	$H_2 \rightarrow H+H$	0.10	0.00	-0.70	-0.72	0.02	-	-0.78	-0.76	0.03	-	-0.74	-0.73
R2	CO₂+H→ <i>bi</i> -HCOO	0.78	0.85	-0.50	-0.35	0.56	0.64	-0.68	-0.55	0.56	0.63	-0.63	-0.47
R3	CO ₂ +H→ <i>trans</i> -COOH	0.95	0.88	0.03	0.18	0.70	0.61	-0.12	0.02	0.69	0.65	-0.22	-0.06
R4	$CO_2 \rightarrow CO+O$	0.79	0.74	-0.72	-0.75	1.03	0.95	-0.27	-0.38	1.13	1.08	-0.79	-0.83
R5	<i>bi</i> -HCOO→ <i>mono</i> -HCOO	0.71	0.70	0.66	0.69	0.73	0.66	0.63	0.58	0.66	0.62	0.57	0.53
R6	<i>bi</i> -HCOO→HCO+O	1.68	1.59	0.82	0.73	1.83	1.74	1.14	1.07	1.76	1.69	0.74	0.67
R7	<i>bi</i> -HCOO+H→H ₂ COO	1.72	1.75	1.02	1.15	1.90	1.88	1.02	1.08	1.59	1.59	0.91	1.00
R8	<i>bi-</i> НСОО+Н→НСООН	1.19	1.08	0.83	0.93	1.07	0.95	0.78	0.86	1.06	0.94	0.83	0.91
R9	H ₂ COO+H→H ₂ COOH	0.74	0.64	-0.15	-0.02	0.55	0.47	-0.49	-0.36	0.57	0.48	-0.58	-0.44
R10	HCOOH+H→H ₂ COOH	0.88	0.88	0.25	0.42	0.93	0.90	0.23	0.37	0.94	0.92	-0.04	0.13
R11	H ₂ COOH→H ₂ CO+OH	0.73	0.60	-0.28	-0.38	0.66	0.53	-0.01	-0.15	0.66	0.52	0.04	-0.07
R12	НСООН→НСО+ОН	0.91	0.87	-0.31	-0.38	0.58	0.65	-0.23	-0.31	0.49	0.47	-0.28	-0.38
R13	HCO+H→H ₂ CO	0.59	0.57	0.34	0.45	0.41	0.39	-0.29	-0.16	0.55	0.54	0.07	0.22
R14	H ₂ CO+H→CH ₂ OH	1.16	1.05	0.34	0.47	0.93	0.84	0.16	0.24	1.18	1.07	0.44	0.53
R15	H ₂ CO+H→CH ₃ O	0.49	0.46	-0.31	-0.19	0.44	0.39	-0.37	-0.25	0.43	0.42	-0.37	-0.27
R16	trans-COOH→cis-COOH	0.49	0.44	0.02	0.02	0.49	0.45	0.03	-0.02	0.51	0.45	0.01	0.01
R17	<i>cis</i> -COOH→CO+OH	1.04	0.93	-1.07	-1.15	0.95	0.92	-1.04	-1.05	0.99	0.87	-0.85	-0.92
R18	СО+Н→СОН	1.95	1.87	1.00	1.11	2.03	1.95	1.14	1.23	1.78	1.71	0.86	0.97
R19	СО+Н→НСО	1.34	1.37	1.16	1.26	1.25	1.28	1.17	1.26	1.05	1.08	0.96	1.05
R20	trans-COOH+H→t,t-COHOH	0.53	0.45	-0.12	0.02	0.65	0.60	-0.25	-0.08	0.73	0.72	-0.09	0.08
R21	<i>t,t</i> -COHOH→ <i>t,c</i> -COHOH	0.42	0.39	0.10	0.09	0.41	0.38	0.10	0.09	0.42	0.40	0.06	0.08

Table S1. The activation barriers and reaction energies of elementary steps on Ni(211) and Ga-Ni(211) surfaces

	reaction	Ni(211)			Ga-Ni(211)				Ga ₃ Ni ₅ (111)				
No.		E_a	E ^{ZPE}	ΔE	ΔE^{ZPE}	E_a	E ^{ZPE}	ΔE	ΔE^{ZPE}	E_a	E ^{ZPE}	ΔE	ΔE^{ZPE}
R22	<i>t,с</i> -СОНОН→ <i>с,с</i> -СОНОН	0.57	0.53	0.55	0.51	0.47	0.47	0.43	0.43	0.41	0.39	0.40	0.33
R23	t,t -COHOH \rightarrow COH+OH	1.21	1.12	-0.47	-0.55	1.22	1.14	-0.43	-0.53	1.10	1.03	-0.34	-0.42
R24	t,c -COHOH \rightarrow COH+OH	1.05	0.98	-0.72	-0.77	1.13	1.01	-0.57	-0.63	0.99	0.87	-0.43	-0.48
R25	с,с-СОНОН→СОН+ОН	0.36	0.38	-1.09	-1.09	0.77	0.75	-0.92	-0.93	0.63	0.63	-0.78	-0.82
R26	СОН+Н→НСОН	0.62	0.64	0.29	0.48	0.58	0.56	0.02	0.17	0.53	0.52	0.17	0.30
R27	HCOH+H→CH ₂ OH	0.61	0.60	0.43	0.50	0.51	0.50	0.31	0.40	0.43	0.44	0.15	0.22
R28	CH ₂ OH+H→CH ₃ OH	0.66	0.62	0.00	0.15	0.57	0.60	0.11	0.26	0.30	0.25	-0.38	-0.26
R29	CH ₃ O+H→CH ₃ OH	1.44	1.37	0.58	0.72	1.45	1.41	0.67	0.81	1.30	1.27	0.58	0.74
R30	О+Н→ОН	1.26	1.19	-0.15	-0.04	1.27	1.20	-0.27	-0.20	1.16	1.10	-0.29	-0.19
R31	$OH+H\rightarrow H_2O$	1.53	1.44	0.67	0.76	1.00	0.90	0.28	0.36	0.95	0.85	0.33	0.45
ZPE denotes zero point energy correction, E_a , E_a^{ZPE} , ΔE and ΔE^{ZPE} are in eV													

Reactions										
		500K	525K	550K	575K	600K				
1	$H_2 \rightarrow H+H$	1.59E+13	1.57E+13	1.56E+13	1.54E+13	1.53E+13				
2	СО₂+Н→ <i>bi</i> -НСОО	7.57E+06	1.61E+07	3.20E+07	5.99E+07	1.06E+08				
3	CO ₂ +H→ <i>trans</i> -COOH	2.53E+08	5.23E+08	1.02E+09	1.86E+09	3.26E+09				
4	CO ₂ →CO+O	3.00E+03	9.05E+03	2.47E+04	6.20E+04	1.44E+05				
5	<i>bi</i> -HCOO→ <i>mono</i> -HCOO	8.93E+11	1.02E+12	1.15E+12	1.29E+12	1.44E+12				
6	<i>bi</i> -HCOO→HCO+O	1.81E-05	1.30E-04	7.84E-04	4.05E-03	1.83E-02				
7	<i>bi</i> -HCOO+H→H ₂ COO	2.01E-06	1.68E-05	1.16E-04	6.83E-04	3.46E-03				
8	<i>bi</i> -HCOO+H→HCOOH	7.72E+03	2.31E+04	6.26E+04	1.56E+05	3.61E+05				
9	H ₂ COO+H→H ₂ COOH	4.51E+08	7.92E+08	1.32E+09	2.12E+09	3.28E+09				
10	HCOOH+H→H ₂ COOH	6.14E+03	1.74E+04	4.50E+04	1.07E+05	2.39E+05				
11	$H_2COOH \rightarrow H_2CO+OH$	1.08E+08	2.04E+08	3.65E+08	6.21E+08	1.01E+09				
12	НСООН→НСО+ОН	4.89E+05	1.06E+06	2.14E+06	4.07E+06	7.37E+06				
13	HCO+H→H ₂ CO	2.41E+08	3.89E+08	6.01E+08	8.98E+08	1.30E+09				
14	H ₂ CO+H→CH ₂ OH	2.84E+04	7.57E+04	1.85E+05	4.19E+05	8.88E+05				
15	H ₂ CO+H→CH ₃ O	4.48E+08	7.28E+08	1.13E+09	1.70E+09	2.47E+09				
16	trans-COOH→cis-COOH	2.08E+08	3.60E+08	5.95E+08	9.43E+08	1.44E+09				
17	<i>cis</i> -COOH→CO+OH	6.23E+03	1.81E+04	4.78E+04	1.16E+05	2.63E+05				
18	СО+Н→СОН	1.58E-07	1.44E-06	1.07E-05	6.71E-05	3.62E-04				
19	СО+Н→НСО	1.10E+00	4.73E+00	1.79E+01	6.02E+01	1.83E+02				
20	trans-COOH+H→t,t-COHOH	2.96E+06	6.05E+06	1.16E+07	2.11E+07	3.65E+07				
21	t,t-COHOH→t,c-COHOH	3.27E+09	5.21E+09	7.98E+09	1.18E+10	1.69E+10				
22	t,c -COHOH $\rightarrow c,c$ -COHOH	4.43E+08	7.72E+08	1.28E+09	2.04E+09	3.12E+09				
23	t,t -COHOH \rightarrow COH+OH	5.19E+01	1.93E+02	6.37E+02	1.90E+03	5.18E+03				
24	<i>t,с</i> -СОНОН→СОН+ОН	1.39E+03	4.47E+03	1.30E+04	3.44E+04	8.42E+04				
25	с,с-СОНОН→СОН+ОН	5.78E+05	1.39E+06	3.09E+06	6.43E+06	1.26E+07				
26	СОН+Н→НСОН	2.41E+07	4.70E+07	8.65E+07	1.51E+08	2.52E+08				
27	НСОН+Н→СН₂ОН	3.07E+07	5.62E+07	9.75E+07	1.62E+08	2.57E+08				
28	СН₂ОН+Н→СН₃ОН	4.16E+06	8.50E+06	1.63E+07	2.96E+07	5.13E+07				
29	СН₃О+Н→СН₃ОН	2.55E-02	1.27E-01	5.47E-01	2.08E+00	7.08E+00				
30	О+Н→ОН	1.81E+01	7.13E+01	2.48E+02	7.76E+02	2.21E+03				
31	OH+H→H ₂ O	8.65E+03	2.47E+04	6.40E+04	1.53E+05	3.42E+05				

Table S2. The reaction rate constants at the temperature of 500-600 K of elementary steps in the process of CO_2 hydrogenation to CH_3OH .

Figure S1. The side views (top) and top views (bottom) of optimized structures of potential intermediates in the process of CH₃OH synthesis on Ni(211) surface.

Figure S2. The side views (top) and top views (bottom) of the optimized structures of potential intermediates in the process of CH₃OH synthesis on Ga-Ni(211) surface.

Figure S3. The side views (top one) and top views (bottom one) of ISs, TSs and FSs of all the elementary steps that are considered in the process of CO_2 hydrogenation to CH_3OH on Ni(211) surface.

Figure S4. The side views (top one) and top views (bottom one) of ISs, TSs and FSs of all the elementary steps that are considered in the process of CO_2 hydrogenation to CH_3OH on Ga-Ni(211) surface.

Computational details of micro-kinetic modeling

The site balance of intermediates can be written in the coverage of the species.¹ Pseudo steady-state approximation² was used to describe the adsorbed surface species, based on the assumption that the production and consumption rate are equal for the species. In addition, the adsorptions of CO_2 and H_2 are assumed to be in equilibrium in the micro-kinetic modeling. The equations are displayed as follows:

$$\begin{aligned} \theta_{CO_2} + \theta_H + \theta_{trans - COOH} + \theta_{cis - COOH} + \theta_{OH} + \theta_{t,t - COHOH} + \theta_{t,c - COHOH} \\ + \theta_{c,c - COHOH} + \theta_{HCOH} + \theta_{CH_2OH} + \theta^* &= 1 \end{aligned}$$

(1)

$$k_{3} * \theta_{CO_{2}} * \theta_{H} - k_{16} * \theta_{trans - COOH} - k_{20} * \theta_{trans - COOH} * \theta_{H} = 0$$
(2)

$$k_{17} * \theta_{cis - COOH} + k_{23} * \theta_{t,t - COHOH} + k_{24} * \theta_{t,c - COHOH} + k_{25} * \theta_{c,c - COHOH} - k_{31} * \theta_{OH} * \theta_{H} = 0$$
(3)

$$k_{16} * \theta_{trans - COOH} - k_{17} * \theta_{cis - COOH} = 0$$

$$\tag{4}$$

$$k_{20} * \theta_{trans - COOH} * \theta_H - \left(k_{21} * \theta_{t.t - COHOH} + k_{23} * \theta_{t,t - COHOH}\right) = 0$$
(5)

$$k_{21} * \theta_{t,t-COHOH} - (k_{22} * \theta_{t,c-COHOH} + k_{24} * \theta_{t,c-COHOH}) = 0$$
(6)

$$k_{22} * \theta_{t,c-COHOH} - k_{25} * \theta_{c,c-COHOH} = 0$$
⁽⁷⁾

$$k_{23} * \theta_{t,t-COHOH} + k_{24} * \theta_{t,c-COHOH} + k_{25} * \theta_{c,c-COHOH} - k_{26} * \theta_{COH} * \theta_{H} = 0$$

(8)

$$k_{26} * \theta_{COH} - k_{27} * \theta_{HCOH} = 0$$
⁽⁹⁾

$$k_{27} * \theta_{HCOH} - k_{28} * \theta_{CH_2OH} = 0$$
⁽¹⁰⁾

$$\theta_{CO_2} = P_{CO_2} * k * \theta^* \tag{11}$$

$$\theta_H = \sqrt{P_{H_2} * k_1} * \theta^* \tag{12}$$

where θ_x represents the coverage rate of x. θ^* is the coverage of free site.

- Zhang, R.; Peng, M.; Wang, B. Catalytic selectivity of Rh/TiO₂ catalyst in syngas conversion to ethanol: probing into the mechanism and functions of TiO₂ support and promoter. *Catal. Sci. Technol.* 2017, 7, 1073-1085.
- (2) Liu P.; Logadottir A.; Nørskov J. K. Modeling the electro-oxidation of CO and H₂/CO on Pt, Ru, PtRu and Pt₃Sn. *Electrochim. Acta.* 2003, 48, 3731-3742.