Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019 Figure 1. Phonon band structures of MAB phases.









































Wave vector





Wave vector

Wave vector







Mo<sub>4</sub>AlB<sub>6</sub>













![](_page_11_Figure_1.jpeg)

0

Wave vector

![](_page_11_Figure_3.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_13_Figure_0.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

![](_page_16_Figure_0.jpeg)

The instability of various MAB phases with respect to the type of transition metal.

FC<sub>M</sub> (eVÅ<sup>-2</sup>)

![](_page_17_Figure_1.jpeg)

The summation of force constants of all springs connected to an M atom in MAB phases with respect to the type of transition metal.

FC<sub>AI</sub> (eVÅ<sup>-2</sup>)

![](_page_18_Figure_1.jpeg)

FC<sub>B</sub> (eVÅ<sup>-2</sup>)

![](_page_19_Figure_1.jpeg)

Exfoliation energy (eVÅ<sup>-2</sup>)

![](_page_20_Figure_1.jpeg)

Exfoliation energies of MAB phases with respect to the type of transition metal.

The data in Figure 3(a) are presented for each phase separately

![](_page_22_Figure_0.jpeg)

 $M_2AIB_2$ 

 $M_3Al_2B_2$ 

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_0.jpeg)

 $M_3AIB_4$ 

![](_page_25_Figure_0.jpeg)

atom-atom distance (Å)

 $M_4AIB_6$ 

![](_page_26_Figure_0.jpeg)

MAIB

The data in Figure 3(b) are presented for each phase separately

![](_page_28_Figure_0.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

M<sub>4</sub>AIB<sub>6</sub>

![](_page_32_Figure_0.jpeg)

MAIB

The data in Figure 4(a) are presented for each phase separately

![](_page_34_Figure_0.jpeg)

 $M_2AIB_2$ 

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_0.jpeg)

 $M_4AIB_6$ 

![](_page_38_Figure_0.jpeg)

MAIB

The data in Figure 4(b) are presented for each phase separately

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

E<sub>exf</sub> (eVÅ<sup>-2</sup>)

0.16

0.18

0.2

0.22

0.14

20 └─ 0.08

0.1

0.12

![](_page_44_Figure_0.jpeg)