Electronic supplementary information for:

High-efficient elimination of intracellular bacteria via a metal organic frameworks (MOFs) based three-in-one delivery system

Xu Zhang, ^a Lizhi Liu, ^a Lunjie Huang, ^a Wentao Zhang, ^a Rong Wang, ^aTianli Yue, ^a Jing Sun, ^b Guoliang Li, ^c and Jianlong Wang*^a

a. College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.

b. Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Reources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Qinghai, China.

c. Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, Shandong, China.

* Corresponding author:wanglong79@yahoo.com (JL, Wang)

Contents

1. Experimental	2
1.1 Synthesis of ZIF-67	2
1.2 Synthesis of MOF-5	2
1.3 Synthesis of HKUST-1	2
1.4 Antibiotics encapsulated and HA decorated of MOFs	2
1.5 PVP exchange	2
1.6 Mediating effect of HA	2
2. Results and discussion	4
References	. 20

1.Experimental

1.1 Synthesis of ZIF-67

In a typical synthesis of ZIF-67,¹ 0.45 g cobalt nitrate hexahydrate was dissolved in 3 mL of deionized (DI) water and 5.5 g 2-methylimidazole(2-MIM) was dissolved in 20 mL of DI water. Those two solutions were mixed and stirred for 6 h at room temperature. The resulting purple precipitates were collected by centrifuging, washed with water for 3 times, and finally vacuum–dried at 80 $^{\circ}$ C.

1.2 Synthesis of MOF-5

In a typical synthesis of MOF-5,² 0.5065 g terephthalic acid (PTA) and 850 μ L triethylamine were dissolved in 40 mL of DMF. 1.699 g Zn(OAc)₂ 2H₂O was dissolved in 50 mL of DMF. The zinc salt solution was added to the organic solution forming a precipitate and stirred for 3h. The precipitates were collected by centrifuging, washed with DMF for several times and finally vacuum-dried at 80 °C.

1.3 Synthesis of HKUST-1

In a typical synthesis of HKUST-1,³ 1.22 g Cu(NO₃)₂ 3H₂O and 0.58 g 1,3,5-benzenetricarboxylic acid (BTA) were dissolved in 5 mL dimethylsulfoxide (DMSO) to prepare precursor solution. Then 200 μ L of the precursor solution was dropped into 10 mL methanol under stirring and stirring for another 10 min. The precipitate was collected by centrifugation, washed with methanol and finally vacuum-dried at 80 °C.

1.4 Antibiotics encapsulated and HA decorated of MOFs

The one-step synthesis of Tet@ZIF-67, Tet@MOF-5 and Tet@HKUST-1, and hyaluronic acid (HA) decorated were refer to experimental section with some modification based on the above three methods.

1.5 PVP exchange⁴

As-synthesized TZH were dispersed in 10mL of5% PVP solution, left for 10min, then centrifuged to obtain the supernatant and analyze the amount of antibiotics. This PVP exchange was repeated 2 more times.

1.6 Mediating effect of HA

To investigate the mediate function of HA in the process of cell phagocytosis, Rhodamine B (RhB) instead of Tet drugs was encapsulated in the ZIF-8 structure to prepare RhB@ZIF-8 or RhB@ZIF-8@HA. The sterile cover slips were put in 6-well culture plates and macrophages were

seeded at a density of 5 x 10^4 cells per well allowed to adhere for 12 h. The test and control materials were added to the growth media and cultured for 3 h afterwards. Then washed twice with PBS. Finally, the cells were fixed with 4% paraformaldehyde for 15 min at room temperature and washed twice with PBS again. The slides were mounted and observed with a fluorescence microscope imaging system.

2. Results and discussion

 $\label{eq:scheme s1} \textbf{Scheme s1} \text{ Scheme of TZH synthesis.}$

Fig. S1 SEM image of (A) ZIF-8 and (B) TZH particles. (a) and (b) are freshly prepared and left for two weeks at room temperature, respectively.

Fig. S2 XRD patterns of fresh prepared or after placed for 2 weeks at RT of(A) pure ZIF-8 and (B)TZH.

Fig. S3 XPS spectra of Zn $2p_3$, C 1s, N 1s and O 1s performed on ZIF-8, Tet@ZIF-8 and TZH.

Sample	Zn 2p ₃	C 1s	N 1s	O 1s
ZIF-8	1022.40	285.16	399.16	532.28
Tet@ZIF-8	1022.35	285.06	399.07	532.01
TZH	1022.16	285.09	399.06	531.99

Table S1 The binding energy regions corresponding to Zn 2p₃, C 1s, N 1s and O 1s characteristic peaks of XPS

experiments performed on ZIF-8,Tet@ZIF-8 and TZH.

Fig. S4 $^1\!\mathrm{H}\text{-}\mathrm{NMR}$ line shape of Tet, ZIF-8, Tet@ZIF-8, HA and TZH.

Fig.S5 The UV–vis absorption spectrum (A) and standard curve (B) of the concentration of tetracycline range from 0-50 μ g·mL⁻¹.

 $Fig. \ S6 \ UV-vis \ absorption \ spectrum \ of \ TZH (encapsulated) \ and \ ZIF-8-Tet (adsorbed).$

Fig. S7 Zeta potential of ZIF-8, Tet, Tet@ZIF-8 and TZH.

Fig. S8 PVP exchange results of TZH.

Sample	BET surface	Adsorption average pore	BJH Adsorption cumulative
	area(m ² g)	diameter(nm)	volume of pores(cm ³ /g)
ZIF-8	1,762.31	2.1552	0.131649
Tet@ZIF-8	1,779.60	2.1278	0.125499
TZH	2,034.34	2.0951	0.116224

 Table S2 Summary of the BET parameters of the ZIF-8, Tet@ZIF-8 and TZH

Fig. S9 N_2 adsorption/desorption isotherms of HA measured at 77 K.

Fig. S10 (A) N_2 adsorption/desorption isotherms measured at 77 K and (B) corresponding pore size distribution calculated using BJH of ZIF-8 and TZH(new prepared or after placed for 2 weeks).

Sample		BET Surface Area	Adsorption average	BJH Adsorption cumulative
		(m ² g)	pore diameter (nm)	volume of pores(cm ³ /g)
ZIF-8	new prepared	1,762.31	2.1552	0.131649
	after 2 weeks	503.68	2.1482	0.026681
TZH	new prepared	2,034.34	2.0951	0.116224
	after 2 weeks	1,526.65	2.0958	0.083729

Table S3 Summary of the BET parameters of the ZIF-8 and TZH(new prepared or after placed for 2 weeks)

Name	Cell type	$Dose/\mu g \cdot mL^{-1}$ (cell viability)	Reference
NZIF-8	HeLa	50 (>70%)	5
ZIF-8	HeLa	100 (50%)	6
	J774	25 (50%)	
	MDA-MB-231		
ZIF-8	MDA-MB-468	250 (75-90%)	7
	MCF-7		
ZIF-8	NCI		
	HT-29	>25 (unmeasured, 50%)	8
	HL-60		
PAA@ZIF-8 NPs	MCF-7	50 (>90.8%)	9
ZIF-8/GO	4T1	100 (close to 100%)	10
TZH	RAW 264.7	50 (>80%)	This work

Table S4 The cytotoxicity of ZIF-8 or related composites to different cell types in some previous literatures

Fig. S11 Co-localization of RhB@ZIF-8@HA and macrophages. All scale bars are 50 $\mu m.$

References

- 1. J. Qian, F. Sun and L. Qin, *Materials Letters*, 2012, **82**, 220-223.
- 2. D. J. Tranchemontagne, J. R. Hunt and O. M. Yaghi, *Tetrahedron*, 2008, 64, 8553-8557.
- J.-L. Zhuang, D. Ceglarek, S. Pethuraj and A. Terfort, *Advanced Functional Materials*, 2011, **21**, 1442-1447.
- 4. J. Zhuang, C.-H. Kuo, L.-Y. Chou, D.-Y. Liu, E. Weerapana and C.-K. Tsung, *Acs Nano*, 2014, **8**, 2812-2819.
- M. Zheng, S. Liu, X. Guan and Z. Xie, Acs Applied Materials & Interfaces, 2015, 7, 22181-22187.
- 6. C. Tamames-Tabar, D. Cunha, E. Imbuluzqueta, F. Ragon, C. Serre, M. J. Blanco-Prieto and P. Horcajada, *Journal of Materials Chemistry B*, 2014, **2**, 262-271.
- 7. H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nystrom and X. Zou, *Journal of the American Chemical Society*, 2016, **138**, 962-968.
- I. B. Vasconcelos, T. G. da Silva, G. C. G. Militao, T. A. Soares, N. M. Rodrigues, M. O. Rodrigues, N. B. da Costa, Jr., R. O. Freire and S. A. Junior, *Rsc Advances*, 2012, 2, 9437-9442.
- H. Ren, L. Zhang, J. An, T. Wang, L. Li, X. Si, L. He, X. Wu, C. Wang and Z. Su, *Chemical Communications*, 2014, **50**, 1000-1002.
- 10. Z. Tian, X. Yao and Y. Zhu, *Microporous and Mesoporous Materials*, 2017, **237**, 160-167.