Supplementary Information (SI) to accompany

Transport of microtubules according to the number and spacing of

kinesin motors on gold nano-pillars

Taikopaul Kaneko, Suguru Ando, Ken'ya Furuta, Kazuhiro Oiwa, Hirofumi Shintaku,

Hidetoshi Kotera, and Ryuji Yokokawa*

*Corresponding author: Ryuji Yokokawa. Department of Micro Engineering, Kyoto

University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan. Tel/Fax:

+81-75-383-3682; Email: ryuji@me.kyoto-u.ac.jp

Contents

1.	Supplementary figures	3
2.	Supplementary table	8
3.	Supplementary references	10

1. Supplementary figures

Supplementary Figure S1 | Design of Au nano-pillars. (a) Top view. (b) Cross sectional view.

Supplementary Figure S2 | Spectral data of SAM obtained by ellipsometry. (a) Silane-PEG-CH₃ SAM on the SiO₂ surface treated with the silane-PEG-CH₃ solution. (b) Thiol-PEG-biotin SAM on the Au surface treated with the thiol-PEG-biotin solution. (c) Silane-PEG-CH₃ SAM on the SiO₂ surfaces treated with the mixed SAM solution. (d) Thiol-PEG-biotin SAM on the Au surface treated with the mixed SAM solution.

Supplementary Figure S3 | **Thickness of SAMs.** (a) Structure of silane-PEG-CH₃ SAM. The expected SAM thickness was calculated as 3.9–5.0 nm. (b) Structure of thiol-PEG-biotin SAM. The expected SAM thickness was calculated as 2.05 nm.

Supplementary Figure S4 | Dependency of the microtubule gliding velocity on the concentration and density of AviTag-K465. Motor density was estimated from the concentration of AviTag-K465. We assumed all kinesin molecules introduced into a flow cell were immobilized on the surface. Mean \pm S.D.; N > 20.

Supplementary Figure S5 | Trajectories of short and long microtubules on Au nano-pillars. The trajectories of short microtubules ($L = 2.28 \pm 0.99 \mu m$) on nano-pillars with (a) 100 nm, (c) 300 nm, and (e) 500 nm spacings. Trajectories of long microtubules (>10 µm) on nano-pillars with (b) 100 nm, (d) 300 nm, and (f) 500 nm spacings.

2. Supplementary table

Pattern	Diameter, nm	Spacing, nm	Height, nm
1	50	100	100
2	100	300	100
3	100	400	100

Supplementary Table S1 | Design of nano-pillars.

Parameter	Symbol	Values	Note, reference
Dynamic viscosity of buffer	η	0.0045 Pa·s	The value of 40 v/v% glycerol.
Distance between microtubule and surface	h _{MT}	15 nm	1
Compliance of kinesin spring	κ _s	0.2 pN/nm	2–4
Rest length of kinesin spring	l_0	40 nm	2–4
Unload velocity of kinesin	v_0	45.4 nm/s	
Stall force of kinesin	Fs	7 pN	5,6
Detachment rate of kinesin	k _{off}	$0.79e^{-\frac{F}{6.1}}(F < 0)$ $0.79 + 1.59F(F > 0)$	<i>F</i> is the load on kinesin's motor head. F > 0 means <i>F</i> is in the same direction as kinesin's step ⁷ .

Supplementary Table S2 | Values of parameters used in the numerical simulation.

3. Supplementary references

- Kerssemakers, J.; Howard, J.; Hess, H.; Diez, S. The Distance That Kinesin-1 Holds Its Cargo from the Microtubule Surface Measured by Fluorescence Interference Contrast Microscopy. *Proc. Natl. Acad. Sci. U. S. A.* 2006, *103*, 15812–15817.
- (2) Jamison, D. K.; Driver, J. W.; Rogers, A. R.; Constantinou, P. E.; Diehl, M. R. Two Kinesins Transport Cargo Primarily *via* the Action of One Motor: Implications for Intracellular Transport. *Biophys. J.* 2010, *99*, 2967–2977.
- (3) Driver, J. W.; Jamison, D. K.; Uppulury, K.; Rogers, A. R.; Kolomeisky, A. B.; Diehl, M. R. Productive Cooperation among Processive Motors Depends Inversely on Their Mechanochemical Efficiency. *Biophys. J.* 2011, *101*, 386–395.
- Driver, J. W.; Rogers, A. R.; Jamison, D. K.; Das, R. K.; Kolomeisky, A. B.; Diehl, M. R.
 Coupling between Motor Proteins Determines Dynamic Behaviors of Motor Protein Assemblies.
 Phys. Chem. Chem. Phys. 2010, *12*, 10398–10405.
- (5) Carter, N. J.; Cross, R. A. Mechanics of the Kinesin Step. *Nature* 2005, 435, 308–312.
- (6) Block, S. M.; Asbury, C. L.; Shaevitz, J. W.; Lang, M. J. Probing the Kinesin Reaction Cycle with a 2D Optical Force Clamp. *Proc. Natl. Acad. Sci. U. S. A.* 2003, *100*, 2351–2356.
- (7) Arpağ, G.; Shastry, S.; Hancock, W. O.; Tüzel, E. Transport by Populations of Fast and Slow Kinesins Uncovers Novel Family-Dependent Motor Characteristics Important for *in vivo* Function. *Biophys. J.* 2014, *107*, 1896–1904.