Electronic Supplementary Information (ESI)

Online Fabrication of Ultralight, Three-Dimensional Ultrafine Fibre Assemblies with a Double-porous Feature

Xin Chen, \ddagger^a Yang Xu, \ddagger^a Wenxin Zhang, ^a Kangli Xu,^a Qinfei Ke,^{*b} Xiangyu Jin,^{a,b} and Chen Huang^{*a,b}

^aKey Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles,

Donghua University, Shanghai 201620, China

^bDepartment of Nonwoven Materials & Engineering, College of Textiles, Donghua University,

Shanghai 201620, China

‡ These authors contributed equally to this work.

* Correspondence: hc@dhu.edu.cn (Chen Huang); kqf@dhu.edu.cn (Ke Qinfei)

Fig. S1. Schematic diagram of the humidification system.

The mist concentration was calculated according to the following formula:

$$C_1 = \frac{Q \times \rho \times 10^3}{v_1 \times S_1 \times 3600 \times 10^{-4}}$$

where C_1 (mg m⁻³) represents mist concentration, ρ (g cm⁻³) is the density of water, Q (ml h⁻¹) is the mist load, v_1 (m s⁻¹) is the wind speed and S_1 (154.7 cm²) is the area of airstream.

Fig. S2. (a) Diameter distributions of the 3D and (b) 2D fibre assemblies electrospun at different DCM/DMF ratios (\overline{d} represents the average diameter of the fibres).

Items	3D	2D	
D ₀ (mg cm ⁻³)	1	250	
$D_1 (mg cm^{-3})$	9.5	189.6	
Porosity (%)	99.24	84.832	

 Table S1. Physical parameters of 3D and 2D CAB fibre assemblies.

Fig. S3. Comparison of the density among previously reported several materials, including PAN/BA-a/SiO₂ aerogels,¹ cellulose sponge,² PLLA/PAN 3D aligned nanofibres,³ PCL/PLA 3D nanofibrous scaffolds,⁴ PAN/SiO₂ aeroges,⁵ PLLA/PAN 2D mesh,³ PCL/PU composite fibrous films,⁶ nylon nanofibrous membranes,⁷ PEO@PAN/PSU composite membranes,⁸ CA/PCL 2D membranes.⁹

v₂ (m s⁻¹)	Δm (mg)	C ₂ (mg m ⁻³)	
1	6742.8	2247.6	
2	13870.1	2311.6	
3	21882.9	2431.4	
4	32675.3	2722.9	
5	42988.1	2865.9	

Table S2. Concentration of DCM vapor at different suction speeds.

The length of the solution tank at moving direction of the conveyor belt is 5 cm and the belt moves 2.5 cm for every 30 min. Therefore, the bonding time of fibre assembly is ~ 60 min, and the bonding degree can be adjusted by simply varying the suction speed. The concentration of solvent vapor (C_2) is calculated according to the following formula:

$$C_2 = \frac{\Delta m}{10 \times v_2 \times S_2 \times 10^{-4} \times 60}$$

where Δm (mg) is the weight loss of solvent after volatilizing for 10 minutes at a certain fan speed, v_2 (m s⁻¹) is the suction fan speed and S_2 (50 cm²) is the open area of solution tank.

Fig. S4. SEM images showing the bonding degree of fibre assemblies under various

suction speeds.

Fig. S5. (a) FT-IR spectra and (b) XRD patterns of 3D CAB fibre assemblies before and

after DCM vapor bonding.

Table S3. Water flux, hydrostatic pressure, dust holding weight and dust holding

Items	3D	2D
Water flux (L m ^{-2} h ^{-1})	334.38	0
Hydrostatic pressure (mmH ₂ O)	12.3 ± 1.1	65.9 ± 0.6
(G ₁ -G ₀) (g)	0.0239 ± 0.0039	0.0145 ± 0.0021
Dust holding capacity (g m ⁻²)	2.39	1.45

capacity of 3D and 2D CAB fibre assemblies.

Fig S6. The relationship between filtration time and QF of 3D and 2D CAB fibre assemblies.

Fig S7. Comparison of average pore size between our 3D fibre assembly and previously reported porous materials by electrospinning, including TiO₂/PAN (2/1) nanofibrous membranes,¹⁰ PAN membranes,¹¹ PAN-F10/S3 3D composite membrane,¹² PA-6 nanofibre/nets membrane.¹³

Fig S8. Comparison of specific surface area between our sample and previously reported porous materials prepared by electrospinning, including PS macro-porous fibres,¹⁴ PLA fibres membrane,¹⁵ PS/PU Co-axial fibres,¹⁶ CA/F-PBZ (1/0.5) composite membrane.¹⁷

Fig S9. Comparison of the pore volume between our sample and previously reported porous materials prepared by electrospinning, including PS macro-porous fibres,¹⁴ PDVB(n-hexane) nanoporous materials,¹⁸ PS/PU Co-axial fibres,¹⁶ PAN-based carbon fibres.¹⁹

Table S4. Electric charges of CAB	PMMA, PS,	PLLA prepared	by 0.5 h of
-----------------------------------	-----------	---------------	-------------

Polymer t	уре	САВ	РММА	PS	PLLA
Electric char	ge (V)	- (3.75±1.02)	- (3.21±0.87)	- (3.07±0.99)	+ (2.69±0.72)

electrospinning

References

- 1 Y. Si, J. Y. Yu, X. M. Tang, J. L. Ge and B. Ding, *Nat. Commun.*, 2014, **5**, 5802.
- 2 T. Xu, Z. Wang, Y. C. Ding, W. H. Xu, W. D. Wu, Z. T. Zhu and H. Fong, *Carbohydr. Polym.*, 2018, **179**, 164-172.
- 3 L. Jin, Q. W. Xu, C. Li, J. B. Huang, Y. L. Zhang, D. C. Wu and Z. L. Wang, *Macromol. Mater. Eng.*, 2017, **302**, 1600448.
- 4 T. Xu, Q. Q. Yao, J. M. Miszuk, H. J. Sanyour, Z. K. Hong, H. L. Sun and H. Fong, *Colloids Surf.*, *B*, 2018, **171**, 31-39.
- 5 Y. Si, Q. X. Fu, X. Q. Wang, J. Zhu, J. Y. Yu, G. Sun and B. Ding, *ACS Nano* 2015, 9(4), 3791-3799.
- 6 F. Y. Guo, N. Wang, L. Wang, L. L. Hou, L. Ma, J. Liu, Y. E. Chen, B. B. Fan and Y. Zhao, J. Mater. Chem. A, 2015, 3, 4782-4787.
- 7 C. A. Fuenmayor, S. M. Lemma, S. Mannino, T. Mimmo and M. Scampicchio, *J. Food Eng.* 2014, **122**, 110-116.
- 8 S. C. Zhang, H. Liu, X. Yin, J. Y. Yu and B. Ding, ACS Appl. Mater. Interfaces, 2016, 8, 8086-8095.
- 9 T. Xu, Z. P. Liang, B. Ding, Q. Feng and H. Fong, Polymer, 2018, 151, 299-306.
- 10 J. F. Su, G. H. Yang, C. L. Cheng, C. Huang, H. Xu, Q. F. Ke, *J. Colloid Interface Sci.*, 2017, **507**, 386-396.
- 11 J. L. Ge, D. D. Zong, Q. Jin, J. Y. Yu, B. Ding, Adv. Funct. Mater., 2018, 28, 1705051.
- 12 H. C. Gao, Y. Q. Yang, O. Akampumuza, J. Hou, H. N. Zhang and X. H. Qin, *Environ. Sci.: Nano*, 2017, **4**, 864-875.
- 13 S. C. Zhang, H. Liu, F. Zuo, X. Yin, J. Y. Yu, B. Ding, Small, 2017, 13, 1603151.
- 14 W. J. Liu, L. Zhu, C. Huang and X. Y. Jin, ACS Appl. Mater. Interfaces, 2016, 8, 34870-34878.
- 15 R. P. Tian, P. Zhang, R. H. Lv, B. Na, Q. X. Liu and Y. H. Ju, *RSC Adv.*, 2015, 5, 37539-37544.
- 16 J. Y. Liu, F. Tian, Y. W. Shang, F. J. Wang, B. Ding, J. Y. Yu, Z. Guo, *Nanoscale*, 2013, **5**, 2745-2755.
- 17 Y.W. Shang, Y. Si, A. Raza, L. P. Yang, X. Mao, B. Ding, J. Y. Yu, *Nanoscale*, 2012, **4**, 7847-7854.
- 18 Y. L. Zhang, S. Wei, F. J. Liu, Y. C. Du, S. Liu, Y. Y. Ji, T. Yokoi, T. Tatsumi, F. S. Xiao, *Nano Today*, 2009, **4**, 135-142.
- 19 Y. J. Heo, H. I. Lee, J. W. Lee, M. Park, K. Y. Rhee, S. J. Park, *Composites Part B*, 2019, **161**, 10-17.