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Figure S1. XRD patterns of different Z-TPOAC-n samples.

Figure S2. TEM images of commercially available bulk ZSM-5 zeolite crystals with no discernable
mesopores taken at different magnification.






Figure S3. TEM images of Z-TPOAC-8 showing the mesopore distribution in the core-shell
structure.



Table S1. Textural properties of as-made samples.

Surface Area (m?/ g) Pore Volume (cm?/ g)
Sample
P Stotala Smicmh Sextc Vtot.'-lld Vmicme Vmesof
Z-Bulk 329 218 111 0.19 0.12 0.07
Z-TPOAC-8 407 206 201 0.62 0.11 0.51
Z-TPOAC-4 370 227 143 0.34 0.12 0.22
Z-TPOAC-2 361 233 128 0.32 0.12 0.20

3BET surface area.

bt-Plot micropore surface area.

‘t-Plot external surface area.

dTotal pore volume of pores calculated at P/P, = 0.98

et-Plot micropore volume.

f -
Vmeso = VtotaI'Vmicro

Table S2. Local minimums in the trimodal mesopore distribution

zeolites.

Sample Local Minimums

First (nm) | Second (nm) | Third (nm)
Z-TPOAC-8 3.2 5.1 11.3
Z-TPOAC-4 2.6 5.1 13.7
Z-TPOAC-2 2.6 5.1 15

of the core-shell Z-TPOAC-n

Table S3. Trimodal mesopore size and volume distribution of the core-shell Z-TPOAC-n zeolites.

First mesopores (2.6- | Second mesopores (5.0- | Third mesopores (>14.5
5.0 nm) 14.5 nm) nm)

Sample Pea | Volum | Volume Peak | Volum | Volume Peak | Volum | Volume
k e percentag | (nm) | e percentag | (nm) | e percentag
(hm) | (em?/g) | e (%) (cm?/g) | e (%) (cm®/g) | e (%)

Z-TPOAC- | 4.0 0.0395 | 7.80 6.7 0.1564 | 30.89 32 0.3104 | 61.31

8

Z-TPOAC- | 4.0 0.0443 | 20.28 9.0 0.08 36.61 25 0.0942 | 43.11

4

Z-TPOAC- | 4.0 |0.0635 | 33.63 12 0.0448 | 23.73 23 0.0805 | 42.64

2
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Figure S4. Variation of the mesopore pore volume in the trimodal mesopore pore range of 2.6-5.0
nm, 5.0-14.5 nm and >14.5 nm as a function of the amount of TPOAC added in the zeolite synthesis
system.



Figure S5. SEM-EDX elemental analysis of core-shell dual-structure Z-TPOAC-8 zeolite, (a) SEM
image used for EDX-mapping, (b-e) element distribution of (b) Si, (c) O, (d) Al, (e) Na. (f) SEM-EDX
line-scanning of (g) Si and (h) Al.
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Figure S6. (a,b) SEM images, (c) low-resolution TEM images of core-shell dual-structure Z-TPOAC-
4 sample, (d) magnified TEM image of marked area in (c) showing the core-shell boundary.
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Figure S7. (a,b) SEM images, (c) low-resolution TEM images of core-shell dual-structure Z-TPOAC-
2 sample, (d) magnified TEM image of marked area in (c) showing the core-shell boundary.
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Figure S8. TGA curves of different Z-TPOAC-n samples (shown as solid lines) in comparison with
the TGA curve of as synthesized Z-Bulk sample synthesized only with structure-directing agent
TPABr (shown as dashed line). All the samples were dried at 60 °C for more than 12 h before

measurement.
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Figure S9. Powder XRD patterns of as-synthesized Z-Bulk.



Figure S10. (a, b) SEM images, (c) AFM amplitude mode image, (d) Low-resolution cross-sectional

1: Height Sensor

TEM image of Z-Bulk sample.
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Figure S11. (a) N, adsorption—desorption isotherms, and (b) BJH mesopore size distribution of as-

made Z-Bulk.
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Figure $12. Z7Al MAS NMR spectra of mesoporous Z-TPOAC-8 and conventional Z-Bulk samples.
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Figure S13. Relative weight loss by TGA of as-synthesized Z-Bulk and Z-TPOAC-8 samples after
rhodamine 6G Dye adsorption.
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Figure S14. Py-FTIR spectra of H*-form (a) Z-TPOAC-8 and (b) Z-Bulk samples at different
desorption temperature.

Table S4. Numbers of Brgnsted and Lewis acid sites of H*-form Z-TPOAC-8 and Z-Bulk samples
calculated from FTIR spectra of pyridine desorption at different temperatures.

Unit 200 °C desorption

mmol/g B L B/L Ratio
Z-TPOAC-8 0.09412 | 0.01926 4.89
Z-Bulk 0.08825 | 0.02508 3.52

Table S5. TOF values in the Suzuki-Miyaura cross coupling reactions

TOF (h) Cycle 1 Cycle 2 Cycle 3 Cycle 4
Pd/C 49.3 49 47.8 47.8
Z-Bulk 48.7 48.6 48.0 45.7
Z-TPOAC-8 49.1 49.0 49.3 49.3

TOF=mol(yield)/mol(M)/t, M=Pd



Figure S15. SEM images of zeolite samples after four catalytic cycles, (a, b) sample Z-Bulk, (c, d)
sample of core-shell dual-structured Z-TPOAC-8 sample.
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Figure S16. (a) N, adsorption-desorption isotherms of Pd2*-exchanged ZSM-5 zeolites before and
after the Suzuki—-Miyaura cross coupling reactions. The isotherms for Pd2*-Z-TPOAC-8-before, Pd?*-
Z-TPOAC-8-After, and Pd?*-Z-Bulk-before were vertically offset by 240, 120, and 40 cm3/g
respectively. (b) BJH mesopore size distribution corresponding to the desorption branch. All
samples were degassed at 100 °C for 4 h.



Table S6. Textural properties of Pd?*-exchanged ZSM-5 zeolites before and after the Suzuki-—
Miyaura cross coupling reactions.

Surface Area (m?/ g) Pore Volume (cm3/ g)

Stota®  Smicro”  Sext®  Viota®  Vmicre®  Vimesof

Pd2*-Z-Bulk-Before 303 177 127 0.18 0.10 0.08
Pd?*-Z-Bulk-After 213 140 61 0.13 0.08 0.05
Pd?*-Z-TPOAC-8-Before 328 143 186 0.55 0.08 0.47
Pd?*-Z-TPOAC-8-After 310 151 159 0.53 0.08 0.45

Sample

@BET surface area.

bt-Plot micropore surface area.

°t-Plot external surface area.

dTotal pore volume of pores calculated at P/P, = 0.98
et-Plot micropore volume.

f -
Vmeso = VtotaI'Vmicro



