Supplementary Information

B₃₁⁻ and B₃₂⁻: Chiral Quasi-Planar Boron Clusters[†]

Qiang Chen,^{‡a} Teng-Teng Chen,^{‡b} Hai-Ru Li,^a Xiao-Yun Zhao,^a Wei-Jia Chen,^b Hua-Jin Zhai,^{*a} Si-Dian Li^{*a} and Lai-Sheng Wang^{*b}

^a Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China ^b Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

E-mail: hj.zhai@sxu.edu.cn (H.J.Z.); lisidian@sxu.edu.cn (S.D.L.); lai-sheng_wang@brown.edu (L.S.W.)

- **Table S1**. Comparison of the experimental VDEs of B_{31}^- and the calculated VDEs for the low-lying isomers of B_{31}^- .
- **Table S2**. Comparison of the experimental VDEs of B_{32}^- and the calculated VDEs for the low-lying isomers of B_{32}^- .
- Figure S1. Low-lying isomers of B_{31}^- at CCSD(T)/6-311G(d)//PBE0/6-311+G(d) and PBE0/6-311+G(d) levels of theory.
- Figure S2. Low-lying isomers of B_{32}^- at UCCSD(T)/6-31G(d)//PBE0/6-311+G(d) and PBE0/6-311+G(d) levels of theory.
- Figure S3. Comparison of the experimental PES spectrum of B_{31}^- and the simulated spectra for some low-lying isomers of B_{31}^- .
- Figure S4. The AdNDP bonding patterns for the closed-shell $C_2 B_{32}^{2-}$.
- Figure S5 Calculated IRC reaction path of B₃₁⁻ at PBE0/6-311+G(d) level.
- **Figure S6** Calculated IRC reaction path of B_{32}^- at PBE0/6-311+G(d) level.
- Table S3. Optimized cartesion coordinates of the key structures of B_{31}^- and B_{32}^- .

Table S1. Experimental vertical detachment energies (VDEs) of B_{31}^- , compared to the calculated values of the low-lying isomers of B_{31}^- at the TD-PBE0/6-311+G(d) level. All energies are in eV.

Feature	VDE (expt.)	Final state and electronic configuration	VDE (theo.)		
	(expl.)		TD-PBE0		
	B_{31}^{-} Isomer I/II ($C_1^{-1}A$)				
Х	4.07	${}^{2}A \ \{\cdots \ 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}\textbf{47a}^{1}\}$	3.89		
А	4.24	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}\textbf{46a}^{1}47a^{2} \right\}$	4.07		
В	4.60	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}\textbf{45a}^{1}46a^{2}47a^{2} \right\}$	4.49		
С	5.11	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}\textbf{44a}^{1}45a^{2}46a^{2}47a^{2} \right\}$	5.09		
D	5.30	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}\textbf{43a}^{1}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	5.22		
Е	~5.7	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}\textbf{42a}^{1}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	5.54		
F	6.00	${}^{2}A \left\{ \cdots 39a^{2}40a^{2}\textbf{41a}^{1}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	5.92		
G	~6.2	${}^{2}A \left\{ \cdots 39a^{2}\textbf{40a}^{1}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	6.19		
		${}^{2}A \left\{ \cdots 39a^{1}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	6.40		
		B_{31}^{-} Isomer III (C_2 ¹ A)			
		${}^{2}B \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}22a^{2}23a^{2}21b^{2}22b^{2}24a^{2}\textbf{3}\textbf{b}^{1} \right\}$	4.07		
		${}^{2}B \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}22a^{2}23a^{2}21b^{2}22b^{2}\textbf{24a}^{1}23b^{2} \right\}$	4.37		
		${}^{2}A \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}22a^{2}23a^{2}21b^{2}\textbf{22b}^{1}24a^{2}23b^{2} \right\}$	4.53		
		${}^{2}A \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}22a^{2}23a^{2}\textbf{1}b^{1}22b^{2}24a^{2}23b^{2} \right\}$	4.93		
		${}^{2}B \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}22a^{2}\textbf{3}a^{1}21b^{2}22b^{2}24a^{2}23b^{2} \right\}$	4.94		
		${}^{2}B \left\{ \cdots 19b^{2}20a^{2}21a^{2}20b^{2}\textbf{22a}^{1}23a^{2}21b^{2}22b^{2}24a^{2}23b^{2} \right\}$	5.06		
		${}^{2}A \left\{ \cdots 19b^{2}20a^{2}21a^{2}\textbf{20b}^{1}22a^{2}23a^{2}21b^{2}22b^{2}24a^{2}23b^{2} \right\}$	5.18		
		${}^{2}B \left\{ \cdots 19b^{2}20a^{2}\textbf{21a}^{1}20b^{2}22a^{2}23a^{2}21b^{2}22b^{2}24a^{2}23b^{2} \right\}$	5.49		
		${}^{2}B \left\{ \cdots 19b^{2} \textbf{20a}^{1} 21a^{2} 20b^{2} 22a^{2} 23a^{2} 21b^{2} 22b^{2} 24a^{2} 23b^{2} \right\}$	5.96		
		${}^{2}A \left\{ \cdots 19b^{1}20a^{2}21a^{2}20b^{2}22a^{2}23a^{2}21b^{2}22b^{2}24a^{2}23b^{2} \right\}$	6.37		
		B_{31}^{-} Isomer IV ($C_s^{-1}A'$)			
		${}^{2}A' \{ \cdots 17a''^{2}22a'^{2}3a'^{2}18a''^{2}19a''^{2}24a'^{2}20a''^{2}1a''^{2}25a''^{2}6a''^{1} \}$	3.88		
		² A' {…17a" ² 22a' ² 23a' ² 18a" ² 19a" ² 24a' ² 20a" ² 21a" ² 25a' ¹ 26a' ² }	4.62		
		${}^{2}A'' \{ \cdots 17a''^{2}22a'^{2}23a'^{2}18a''^{2}19a''^{2}24a'^{2}20a''^{2}1a''^{1}25a'^{2}26a'^{2} \}$	4.88		
		${}^{2}A'' \{ \cdots 17a''^{2}22a'^{2}23a'^{2}18a''^{2}19a''^{2}24a'^{2}\textbf{20a''}^{1}21a''^{2}25a'^{2}26a'^{2} \}$	5.16		
		² A' {…17a" ² 22a' ² 23a' ² 18a" ² 19a" ² 24a' ¹ 20a" ² 21a" ² 25a' ² 26a' ² }	5.32		
		${}^{2}A'' \{ \cdots 17a''^{2}22a'^{2}23a'^{2}18a''^{2}19a'''^{2}4a''^{2}20a''^{2}21a''^{2}25a'^{2}26a'^{2} \}$	5.50		
		${}^{2}A'' \{ \cdots 17a''^{2}22a'^{2}3a'^{2}\textbf{18a''}^{1}19a''^{2}24a'^{2}20a''^{2}1a''^{2}25a'^{2}26a'^{2} \}$	5.56		
		${}^{2}A'\{\cdots 17a"^{2}22a'^{2}\textbf{3}a'^{1}18a"^{2}19a"^{2}24a'^{2}20a"^{2}21a"^{2}25a'^{2}26a'^{2}\}$	5.60		
		${}^{2}A'' \{ \cdots 17a'' {}^{2}2a'^{2}23a'^{2}18a''^{2}19a''^{2}24a'^{2}20a''^{2}1a''^{2}25a'^{2}26a'^{2} \}$	6.37		
		B_{31}^{-} Isomer V ($C_1^{-1}A$)			
		${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}\textbf{47a}^{1} \right\}$	3.88		
		${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}\textbf{46a}^{1}47a^{2} \right\}$	4.47		
		${}^{2}A \ \{\cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}\textbf{45a}^{1}46a^{2}47a^{2}\}$	4.65		
		${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}43a^{2}\textbf{44a}^{1}45a^{2}46a^{2}47a^{2} \right\}$	4.92		
		${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}42a^{2}\textbf{43a}^{1}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	5.04		
		${}^{2}A \left\{ \cdots 39a^{2}40a^{2}41a^{2}\textbf{42a}^{1}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2} \right\}$	5.30		
		${}^{2}A \ \{\cdots 39a^{2}40a^{2}\textbf{41}a^{1}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2}\}$	5.70		
		${}^{2}A \ \{\cdots 39a^{2}\textbf{40a}^{1}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2}\}$	5.98		
		$^{2}A \{\cdots 39a^{1}40a^{2}41a^{2}42a^{2}43a^{2}44a^{2}45a^{2}46a^{2}47a^{2}\}$	6.29		

Table S2. Experimental vertical detachment energies (VDEs) of B_{32}^{-} , compared to the calculated values of the low-lying isomers of B_{32}^{-} at the TD-PBE0/6-311+G(d) level. All energies are in eV.

Feature	VDE (expt.)	Final state and electronic configuration	VDE (theo.)
	(22 (0.p.)		TD-PBE0
		B_{32}^{-} Isomer VI/VII (C_2 ² A)	
X′	3.57		
Х	3.82	${}^{1}A \{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{2} 23a^{2} 23b^{2} 24b^{2} 24a^{2} 25a^{0} \}$	3.78
А	4.30	${}^{3}A \left\{ \cdots 21b^2 \ 21a^2 \ 22b^2 \ 22a^2 \ 23a^2 \ 23b^2 \ 24b^2 \ \textbf{24}a^1 \ 25a^1 \right\}$	4.12
		${}^{1}A \left\{ \cdots 21b^{2} \ 21a^{2} \ 22b^{2} \ 22a^{2} \ 23a^{2} \ 23b^{2} \ 24b^{2} \ \textbf{24}a^{1} \ \textbf{25}a^{1} \right\}$	4.38
В	5.04	${}^{3}B \left\{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{2} 23a^{2} 23b^{2} \textbf{24b}^{1} 24a^{2} 25a^{1} \right\}$	4.71
		${}^{3}B \left\{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{2} 23a^{2} \textbf{23b}^{1} 24b^{2} 24a^{2} 25a^{1} \right\}$	4.87
С	5.17	${}^{3}A \{ \cdots 21b^{2} \ 21a^{2} \ 22b^{2} \ 22a^{2} \ \mathbf{23a^{1}} \ 23b^{2} \ 24b^{2} \ 24a^{2} \ 25a^{1} \}$	5.00
		${}^{1}B \left\{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{2} 23a^{2} 23b^{2} \textbf{24b}^{1} 24a^{2} 25a^{1} \right\}$	5.06
		${}^{1}B \{ \cdots 21b^{2} \ 21a^{2} \ 22b^{2} \ 22a^{2} \ 23a^{2} \ 23b^{1} \ 24b^{2} \ 24a^{2} \ 25a^{1} \}$	5.20
		${}^{1}A \{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{2} 23a^{1} 23b^{2} 24b^{2} 24a^{2} 25a^{1} \}$	5.22
D	5.80	${}^{3}A \{ \cdots 21b^{2} 21a^{2} 22b^{2} 22a^{1} 23a^{2} 23b^{2} 24b^{2} 24a^{2} 25a^{1} \}$	5.48
		${}^{3}B \{ \cdots 21b^{2} \ 21a^{2} \ 22b^{1} \ 22a^{2} \ 23a^{2} \ 23b^{2} \ 24b^{2} \ 24a^{2} \ 25a^{1} \}$	5.58
		$^{1}A \{ \cdots 21b^{2} \ 21a^{2} \ 22b^{2} \ 22a^{1} \ 23a^{2} \ 23b^{2} \ 24b^{2} \ 24a^{2} \ 25a^{1} \}$	5.80
Е	~6.10	${}^{3}B \{ \cdots 21b^{1} 21a^{2} 22b^{2} 22a^{2} 23a^{2} 23b^{2} 24b^{2} 24a^{2} 25a^{1} \}$	5.87
		${}^{3}A \{ \cdots 21b^{2} \mathbf{21a}^{1} 22b^{2} 22a^{2} 23a^{2} 23b^{2} 24b^{2} 24a^{2} 25a^{1} \}$	5.89
		¹ B {… 21b ¹ 21a ² 22b ² 22a ² 23a ² 23b ² 24b ² 24a ² 25a ¹ }	6.02
		¹ A { $\dots 21b^2$ 21a ¹ 22b ² 22a ² 23a ² 23b ² 24b ² 24a ² 25a ¹ }	6.05
		B_{32} Isomer VIII ($C_i^2 A_u$)	
\mathbf{X}'	3.57	${}^{1}A_{g} \{ \cdots 21a_{u}^{2} 21a_{g}^{2} 22a_{u}^{2} 22a_{g}^{2} 23a_{g}^{2} 23a_{u}^{2} 24a_{g}^{2} 24a_{u}^{2} 25a_{u}^{0} \}$	3.77
Х	3.82	$3A_{g} \{ \cdots 21a_{u}^{2} 21a_{g}^{2} 22a_{u}^{2} 22a_{g}^{2} 23a_{g}^{2} 23a_{u}^{2} 24a_{g}^{2} 24a_{u}^{1} 25a_{u}^{1} \}$	4.10
А	4.30	${}^{1}A_{g} \{ \cdots 21a_{u}^{2} 21a_{g}^{2} 22a_{u}^{2} 22a_{g}^{2} 23a_{g}^{2} 23a_{u}^{2} 24a_{g}^{2} 24a_{u}^{1} 25a_{u}^{-1} \}$	4.32
В	5.04	${}^{3}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{u}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	4.49
		${}^{1}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{u}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	4.84
С	5.17	${}^{3}A_{g} \{ \cdots 21a_{u}^{2} 21a_{g}^{2} 22a_{u}^{2} 22a_{g}^{2} 23a_{g}^{2} \mathbf{23a_{u}^{1}} 24a_{g}^{2} 24a_{u}^{2} 25a_{u}^{1} \}$	5.17
		${}^{3}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} \mathbf{23a_{g}}{}^{1} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.32
		${}^{1}A_{g} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{1} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.35
		${}^{3}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} \mathbf{22a_{g}}{}^{1} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.36
		${}^{3}A_{g} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} \mathbf{22a_{u}}{}^{1} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.42
		${}^{1}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} \mathbf{23a_{g}}{}^{1} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.48
D	5.80	${}^{1}A_{g} \{ \cdots 21a_{u}^{2} 21a_{g}^{2} \mathbf{22a}_{u}^{1} 22a_{g}^{2} 23a_{g}^{2} 23a_{u}^{2} 24a_{g}^{2} 24a_{u}^{2} 25a_{u}^{1} \}$	5.79
		${}^{3}A_{g} \{ \cdots 21a_{u}{}^{1} 21a_{g}{}^{2} 22a_{u}{}^{2} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.84
		${}^{3}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{u}{}^{1} 22a_{u}{}^{2} 22a_{u}{}^{2} 23a_{u}{}^{2} 23a_{u}{}^{2} 24a_{u}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	5.88
		${}^{1}A_{g} \{\cdots 21a_{u}{}^{1} 21a_{2}{}^{2} 22a_{u}{}^{2} 22a_{2}{}^{2} 23a_{2}{}^{2} 23a_{u}{}^{2} 24a_{2}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1}\}$	6.05
Е	~6.10	${}^{1}A_{u} \{ \cdots 21a_{u}{}^{2} 21a_{g}{}^{1} 22a_{u}{}^{2} 22a_{g}{}^{2} 23a_{g}{}^{2} 23a_{u}{}^{2} 24a_{g}{}^{2} 24a_{u}{}^{2} 25a_{u}{}^{1} \}$	6.14

Figure S1. Low-lying isomers of B₃₁⁻. The relative energies are given in eV at CCSD(T)/6-311G(d)//PBE0/6-311+G(d) and PBE0/6-311+G(d) (in square brackets) levels of theory.

Figure S2. Low-lying isomers of B_{32}^- . The relative energies are given in eV at UCCSD(T)/6-31G(d)//PBE0/6-311+G(d) and PBE0/6-311+G(d) (in square brackets) levels of theory.

Figure S3. The experimental PES spectrum of (a) B_{31}^- at 193 nm (6.424 eV), compared to (b-d) the simulated spectra of some low-lying isomers of B_{31}^- .

Figure S4. The AdNDP bonding patterns for the closed-shell $C_2 B_{32}^{2-}$.

Figure S6. Calculated IRC reaction path of B_{32}^- from global minimum $C_2 B_{32}^-$ (VI) to intermediate $C_i B_{32}^-$ (VIII) via the transition state $C_1 B_{32}^-$ (TS2) at PBE0/6-311+G(d) level.

$C_1 \operatorname{B_{31}^-}(\mathbf{I})$				$C_1 \mathrm{B_{31}^-}\mathrm{(TS1)}$			
В	-1.79900600	1.66898700	0.36543300	В	1.04538800	-1.61434800	0.22262800
В	-0.43947200	4.01059600	-0.43895000	В	2.46561200	-0.86212400	-0.11899200
В	-0.40998700	2.54933000	0.33201800	В	2.43671600	0.87935500	-0.01812500
В	1.04433700	0.02998900	0.55457200	В	1.06957200	1.70204600	-0.09439500
В	2.44635900	0.92366300	0.38196500	В	-0.33670700	-0.75470600	-0.03885300
В	-0.35527600	-0.81701100	0.81877700	В	-1.76717000	1.70024600	-0.00070900
В	5.09880900	0.84671000	-0.70047000	В	1.07988400	3.45564300	-0.14147900
В	-4.46330100	1.52245500	-0.48306300	В	1.06710600	-3.41830300	-0.00794100
В	3.88501300	0.08662200	0.10216400	В	-0.35522700	2.53684600	0.03764500
В	-3.25403900	2.45674100	-0.11672400	В	2.50355600	-2.58155900	0.12415000
В	-1.84014700	-0.01180500	0.72080500	В	2.50581500	2.57023400	-0.07200800
В	1.04822500	1.72779500	0.40943200	В	-0.37368000	4.15888400	-0.16528700
В	2.41416500	2.55682600	-0.11511700	В	-1.78774500	3.41685200	-0.02319800
В	3.87673600	1.79592300	-0.32440800	В	-3.10977900	0.86220200	0.45642300
В	5.08328100	-0.70856000	-0.70077700	В	-3.18127400	-0.76683500	0.03925500
В	1.08791200	-1.65128400	0.67006000	В	-4.74334100	0.01670400	0.04985700
В	2.48059800	-0.81172000	0.38607600	В	-4.54292200	1.61807500	-0.00045200
В	2.53612700	-2.50905900	0.11419000	В	-4.60702900	-1.58028000	-0.00454500
В	1.15032400	-3.33220100	-0.10563200	В	-1.84607200	-3.33990000	-0.09549200
В	-0.32569600	-2.45417300	0.33824000	В	-0.40336200	-4.06822200	-0.07751900
В	-0.27196500	-3.92887100	-0.43743200	В	-3.28415000	-2.50579100	-0.06365200
В	-4.66323800	-0.04943800	-0.47779800	В	1.06391700	0.00443900	-0.37457700
В	-4.44062700	-1.60167000	-0.62479900	В	-3.25041500	2.55332100	0.11051200
В	-3.18211400	-0.81603900	0.13473800	В	-1.78605600	-1.58874900	-0.32472600
В	-1.70983200	-3.26874200	-0.33194500	В	3.92973100	-1.77686100	0.09390500
В	-3.21884500	0.82819500	0.46431400	В	3.84281900	0.02045500	0.27243800
В	-3.14988900	-2.48699700	-0.39524800	В	3.98447000	1.76272800	0.04873400
В	-1.82788500	3.30947500	-0.16130400	В	-0.37219800	-2.43101400	-0.05062300
В	3.89019400	-1.69250600	-0.19401400	В	5.26306800	0.78153800	0.04528600
В	-1.70027600	-1.56107600	0.03575700	В	5.23963900	-0.79210100	0.01220100
В	1.00951500	3.38784600	-0.22086000	В	-1.75016700	0.04122400	0.15953900

Table S3. Optimized coordinates of the key structures of B_{31}^- and B_{32}^- at the PBE0/6-311+G(d) level of theory.

Table S3. Continued.

$C_2 \mathrm{B}_{32}^{-}(\mathrm{VI})$				$C_i B_{32}^-$ (VIII)			
В	-1.43409000	0.84049000	-0.50880100	В	1.45172400	-0.83019300	0.03414900
В	-1.41110900	2.50846000	-0.26531400	В	2.91321100	0.01866900	0.00527700
В	-0.00183300	3.30204600	0.00455300	В	2.90673400	1.67091300	0.00703500
В	1.39041400	2.34138100	0.08283900	В	1.38117400	2.41368800	0.09883800
В	1.45662700	0.85522000	-0.77022900	В	0.00343000	1.59038800	-0.48456400
В	2.81516400	3.30046500	0.39453400	В	1.49482400	4.15583900	0.07033300
В	-0.02295900	-1.67072400	-0.67198900	В	-1.44355800	-0.78855300	0.37332600
В	2.86702700	-0.08329500	-0.44903200	В	-1.49612000	2.40400400	-0.39086200
В	-2.86702700	0.08329500	-0.44903200	В	1.49612000	-2.40400400	0.39086200
В	1.39041400	3.97693000	0.32274500	В	2.79729000	3.25354700	0.06762400
В	2.86397800	1.67848200	-0.31625900	В	0.03884700	3.27329200	-0.38613900
В	-1.45662700	-0.85522000	-0.77022900	В	-0.00343000	-1.59038800	0.48456400
В	-2.84406200	1.74334500	-0.21615600	В	2.95354900	-1.61793700	0.08571700
В	1.43409000	-0.84049000	-0.50880100	В	-1.45172400	0.83019300	-0.03414900
В	-4.25155100	0.99920100	0.18421700	В	2.99583400	-3.26656400	0.01621800
В	4.21891500	2.45577500	0.52180000	В	0.05107600	4.95851800	0.10809200
В	4.16006100	0.75255500	0.20814100	В	-1.41107300	4.03859700	-0.05905800
В	5.47559400	1.48408100	0.81486000	В	-1.42350400	5.62466500	0.25730000
В	5.48017800	-0.07860700	0.66409000	В	-2.79121100	4.85249400	0.19745900
В	2.84406200	-1.74334500	-0.21615600	В	-2.95354900	1.61793700	-0.08571700
В	1.41110900	-2.50846000	-0.26531400	В	-2.91321100	-0.01866900	-0.00527700
В	-1.39041400	-2.34138100	0.08283900	В	-1.38117400	-2.41368800	-0.09883800
В	-1.39041400	-3.97693000	0.32274500	В	-2.79729000	-3.25354700	-0.06762400
В	-2.86397800	-1.67848200	-0.31625900	В	-0.03884700	-3.27329200	0.38613900
В	-2.81516400	-3.30046500	0.39453400	В	-1.49482400	-4.15583900	-0.07033300
В	-4.21891500	-2.45577500	0.52180000	В	-0.05107600	-4.95851800	-0.10809200
В	-5.48017800	0.07860700	0.66409000	В	2.79121100	-4.85249400	-0.19745900
В	-5.47559400	-1.48408100	0.81486000	В	1.42350400	-5.62466500	-0.25730000
В	4.25155100	-0.99920100	0.18421700	В	-2.99583400	3.26656400	-0.01621800
В	0.00183300	-3.30204600	0.00455300	В	-2.90673400	-1.67091300	-0.00703500
В	-4.16006100	-0.75255500	0.20814100	В	1.41107300	-4.03859700	0.05905800
В	0.02295900	1.67072400	-0.67198900	В	1.44355800	0.78855300	-0.37332600

Table S3. Continued.

$C_1 \mathrm{B_{32}^-}(\mathrm{TS2})$						
В	-1.10775400	1.24871600	-0.39121800			
В	-0.55433200	2.83442400	-0.19290300			
В	1.06782200	3.17856500	-0.03936000			
В	2.15470300	1.91417500	-0.35991400			
В	1.60058400	0.31837000	-0.42975600			
В	3.76877100	2.29260800	0.22890500			
В	-0.54641700	-1.59843800	-0.68569300			
В	2.63705400	-0.96846400	-0.12535000			
В	-2.71208200	0.99002900	-0.45133800			
В	2.61718000	3.38032600	0.21919200			
В	3.19733300	0.66278200	-0.09570700			
В	-1.64080100	-0.33940100	-0.72933900			
В	-2.16408100	2.55117200	-0.12624300			
В	1.10688600	-1.28964500	-0.56434000			
В	-3.74628900	2.27774100	0.20286400			
В	4.83889500	1.02393700	0.35238100			
В	4.24678400	-0.59603400	0.10404800			
В	5.73296100	-0.29652700	0.66995100			
В	5.22568500	-1.78835300	0.60869900			
В	2.14756000	-2.56579900	-0.08866000			
В	0.53927100	-2.83062000	-0.18079300			
В	-2.08009700	-1.81280100	0.00953300			
В	-2.60795100	-3.36375600	0.21057900			
В	-3.25491800	-0.68611300	-0.35123700			
В	-3.74318800	-2.26408100	0.28214900			
В	-4.79724700	-1.01792000	0.45771100			
В	-5.20720900	1.77810700	0.66105600			
В	-5.68754700	0.29190300	0.77985600			
В	3.74489900	-2.30109700	0.22793600			
В	-1.06491900	-3.16148100	-0.06285800			
В	-4.22199600	0.58899300	0.14928000			
В	0.51043900	1.54868200	-0.28942900			