Untying thioether bond structures enabled by "voltage-scissors"

for stable room temperature sodium-sulfur batteries

Kejun Chen^{a, b}, HuangJingWei Li^b, Yan Xu^a, Kang Liu^b, Hongmei Li^b, Xiaowen Xu^b,

Xiaoqing Qiu^a*, Min Liu^b*

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 41083, PR China

^bInstitute of Super-microstructure and Ultrafast Process in Advanced Materials, State Key Laboratory of Powder Metallurgy, School of Physical Science and Electronics, Central South University

IR bands cm ⁻¹	Assignment
3440	OH stretching vibrations
1630	C=C asymmetric vibrations ¹
1385	C-S wagging vibrations ²
850	C-S stretching vibrations ³

Figure S1. (a) TGA of sulfur-doped microporous carbon in Ar with a temperature rise rate of 10 °C min⁻¹, (b) FT-IR spectra of sulfur-doped microporous carbon.

Figure S2. (a)The HRTEM images of SC, (b) XRD pattern of sulfur-doped microporous carbon.

Figure S3. The morphology and structural characterization of SC: (a) SEM image, (b) TEM image, (c) elemental mapping for sulfur element and (d) the distribution of sulfur in the carbon

Figure S4. The nitrogen absorption/ desorption isotherms and the pore size distribution plot (inset) calculated by DFT method.

Figure S5. Discharge/charge curves of sulfur doped carbon: (a) at 0.1 A g^{-1} in the initial 10 cycle and (b) at different current densities ranging from 0.1 to 3.2 A g^{-1} .

Figure S6. (a) The CV profiles of the unactivated SC, (b) electrochemical discharge/charge voltage profiles of the new cell at different cycles in the voltage windows of $0.5 \sim 3.0$ V at 0.1 A g⁻¹.

Figure S7. The ex-situ Raman spectra of SC at the different states during the first cycle.

Figure S8. Ultraviolet-vis spectra of the electrolyte and cathodes solutions cycled in the propylene carbonate electrolyte after 100 cycles at 0.1 A g^{-1} .

Ref	Electrolyte	Loading	Current density	Capacity	Cycle
		(wt%)	_		No
	1M		78.7mA g ⁻¹	282	
4	NaClO ₄ +EC/DEC	47	(0.1 C)	mAh g ⁻¹ total	100
	+SiO ₂ -IL-ClO ₄				
5	0.8M		220mA g ⁻¹ (1C)	153	
	NaClO ₄ +EC/DEC	31.42		mAh g ⁻¹ total	500
6	1M NaClO ₄ +EC/PC	40	67 mA g ⁻¹	400	20
			(0.1C)	mAh g ⁻¹ total	
7	1M NaPF ₆ +EC/DEC	41	68.7mA g ⁻¹	257	200
			(0.1C)	mAh g ⁻¹ total	
8	1M	18	100 mA g ⁻¹	417	100
	NaClO ₄ +EC/DEC			mA g ⁻¹ total	
	1M		586 mA g ⁻¹	306	
9	NaPF ₆ + NaNO3+	35	(1C)	mAh g ⁻¹ sulfur	1500
	TEGDME				
	1M			292	
10	NaClO ₄ +EC/DEC+F	59.4	100 mA g ⁻¹	mAh g ⁻¹ _{sulfur}	200
	EC				
this	1M	21.5	100 mA g ⁻¹	500	
work	NaClO ₄ +PC+FEC			mAh g ⁻¹ total	100
this	1M	21.5	1000	330	800
work	NaClO ₄ +PC+FEC -		mA g ⁻¹	mA g ⁻¹ total	

Table S1. Comparison of electrolyte, loading content and performance with results from the previous RT Na-S batteries.

References

(1) Karim, M. R.; Lee, C. J.; Lee, M. S. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, 5283.

(2) Li, W.; Zhou, M.; Li, H.; Wang, K.; Cheng, S.; Jiang, K. Energy & Environmental Science 2015, 8, 2916.

(3) Gök, A.; Omastová, M.; Yavuz, A. G. Synthetic metals 2007, 157, 23.

(4) Wei, S.; Xu, S.; Agrawral, A.; Choudhury, S.; Lu, Y.; Tu, Z.; Ma, L.; Archer,

L. A. Nature Communications 2016, 7, 11722.

(5) Hwang, T. H.; Jung, D. S.; Kim, J. S.; Kim, B. G.; Choi, J. W. Nano Letters2013, 13, 4532.

(6) Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Advanced Materials 2014, 26, 1261.

(7) Kim, I.; Kim, C. H.; hwa Choi, S.; Ahn, J.-P.; Ahn, J.-H.; Kim, K.-W.; Cairns, E. J.; Ahn, H.-J. *Journal of Power Sources* **2016**, *307*, 31.

(8) Fan, L.; Ma, R.; Yang, Y.; Chen, S.; Lu, B. Nano Energy 2016, 28, 304.

(9) Carter, R. E.; Oakes, L.; Douglas, A.; Muralidharan, N.; Cohn, A. P.; Pint, C.

L. Nano Letters 2017.

(10) Wang, Y.-X.; Yang, J.; Lai, W.; Chou, S.-L.; Gu, Q.-F.; Liu, H. K.; Zhao, D.;

Dou, S. X. Journal of the American Chemical Society 2016, 138, 16576.