Electronic Supplementary Information

Remote heteroepitaxy of atomic layered hafnium disulfide on

sapphire through hexagonal boron nitride

Denggui Wang,^a Yong Lu,^b Junhua Meng,^{*a} Xingwang Zhang,^{*a} Zhigang Yin,^a Menglei Gao,^a Ye Wang,^a Likun Cheng,^a Jingbi You^a and Jicai Zhang^b

^a Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^b College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China

* Corresponding author. E-mail: jhmeng@semi.ac.cn; xwzhang@semi.ac.cn

Fig. S1 Substrate-epilayer remote interaction with different gaps created by different numbers of stacked h-BN interlayer. Results of DFT calculations of averaged electron density along separated slabs for (a) O- and (b) Al-terminated sapphire. Periodic boundary conditions were imposed along the dashed lines of simulation model. Both plots show the existence of significant electron charge density between separated slabs within a gap of about 7 Å.

Fig. S2 Large-area optical microscopy image of HfS₂/h-BN layer on *c*-sapphire.

Fig. S3 Full XPS spectrum of remote epitaxial HfS₂ layer on *c*-sapphire through a monolayer h-BN.

Fig. S4 TEM measurements. Cross-sectional TEM images of as-grown h-BN layer with the growth time of (a) 10 min, (b) 15 min and (c) 20 min, labeled by bilayer, tri-layer and few-layer, respectively.

Fig. S5 UV-vis absorption spectra of h-BN layers on sapphire with different growth time. It can be seen that the absorbance of h-BN increases with increasing growth time, which is consistent with the increased layer number of h-BN.

Fig. S6 XRD pattern of remote epitaxial HfS₂ layer on *c*-sapphire through a monolayer h-BN.

Fig. S7 XRD azimuthal scan of HfS_2 (10-11) reflection. Here, the HfS_2 layer was grown on SiO_2/Si substrate through a monolayer h-BN by CVD under the same conditions.

Fig. S8 Optical microscope image of HfS_2/h -BN photodetector on *c*-sapphire. The distance between two adjacent Au electrodes is determined to be ~70 μ m.

Fig. S9 Schematic diagrams of dry-transferring HfS_2/h -BN layer from sapphire substrate using a thermal release tape.

Fig. S10 Raman spectra acquired from HfS_2/h -BN heterostructure on a PET substrate. The results confirm the coexistence of h-BN and HfS_2 after dry-transfer.