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Figure S1. TEM micrographs of electrospun NiFe2O4 nanofibers evolutionary process 

after calcination at different temperature, indicating the diameter of nanofibre decreased 

as increasing the calcination temperature (due to the removal of PVP): (a) 100 C; (b) 

300 C; (c) 400 C; (d) 600 C.
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Figure S2. Size distribution of nanoparticles (i.e., building blocks) within the NiFe2O4 

nanotubes.
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Figure S3. EDX spectrum of NiFe2O4 nanotubes.
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Figure S4. (a) Schematic illustration of VSM measurement; (b) Optical micrograph of 

a uniaxially aligned NiFe2O4 nanotubes array that was collected on a silicon wafer.
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Note 1

The demagnetizing factor (Nz) of NiFe2O4 nanotubes can be calculated by [1]:

                      (1)
𝑁𝑧 =

2𝑅

𝐿(1 ‒ 𝛽2)

∞

∫
0

𝑑𝑞

𝑞2(𝐽1(𝑞) ‒ 𝛽𝐽1(𝛽𝑞))2
（1 ‒ 𝑒

‒ 𝑞
𝐿
𝑅
）

                                                         (2)𝛽 = 𝑏/𝑅

where R, b and L are outer radius, inner radius and length of nanotubes (Figure S5), 

respectively. J1(q) are Bessel functions of the first kind. Then, the demagnetizing factor 

of the prepared NiFe2O4 nanotubes is calculated to be 0.0035, which is close to zero.
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Figure S5. Geometrical parameters of NiFe2O4 nanotube.
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Note 2

The total energy of the symmetric funning mode under an external magnetic field can 

be formulated as [2]:

𝐸𝑛 = 20𝑛 𝐿𝑛
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 20𝑛 𝑀𝑛
𝜇2

𝑎3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

       
+

9

∑
𝑁 = 1

20𝑛𝑂𝑛 
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 10𝑛𝑂10
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃)

       
+

9

∑
𝑁 = 1

20𝑛 𝑃𝑛
𝜇2

𝑎3(𝑐𝑜𝑠2 ‒ 3𝑐𝑜𝑠2𝜃) + 10𝑛𝑃10
𝜇2

𝑎3(𝑐𝑜𝑠2 ‒ 3𝑐𝑜𝑠2𝜃)

           ,                                                                                                 (3)+ 20𝑛𝜇𝐻𝑐𝑜𝑠𝜃

And the total energy of the parallel rotation mode can be expressed as:

𝐸𝑝 = 20𝑛 𝐾𝑛
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) +
9

∑
𝑁 = 1

20𝑛𝑄𝑛 
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃)

    ,                                                     (4)
+ 10𝑛𝑄10

𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 20𝑛𝜇𝐻𝑐𝑜𝑠𝜃

The relevant parameters can be summarized as below:

  ,                                                    (5)
𝐾𝑛 =

𝑛

∑
𝑗 = 1

𝑛 ‒ 𝑗

𝑛𝑗3

 ,                                           (6)

𝑄𝑛 =
𝑛 ‒ 1

∑
𝑗 = 0

𝑛 ‒ 𝑗

𝑛( (𝑑𝑁

𝑎 )2 + 𝑗2)3

 ,                                                    (7)𝐾𝑛 = 𝐿𝑛 + 𝑀𝑛

 ,                                                     (8)𝑄𝑛 = 𝑂𝑛 + 𝑃𝑛

where,  and , thus .”cos 2𝜃 < 1 cos 𝛾𝑛 = - cos 𝜑𝑛 𝐸𝑛 < 𝐸𝑝

7



Note 3

Note that the interaction between the nanotubes can be neglected. This is because the 

magnetostatic energy is inversely proportioned to d3 (wherein the d is the distance 

between dipoles), then the magnetostatic interaction energy can be decreased 

significantly as increasing the inter-dipoles distance. Herein, we analyze the total 

energy of two neighboring nanotubes under an external magnetic field to confirm the 

neglected contribution from the tube-tube interactions (Figure S6): 

𝐸𝑛 = 40𝑛 𝐿𝑛
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 40𝑛 𝑀𝑛
𝜇2

𝑎3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

       
+

9

∑
𝑁 = 1

40𝑛𝑂𝑛 
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 20𝑛𝑂10
𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃)

       
+

9

∑
𝑁 = 1

40𝑛 𝑃𝑛
𝜇2

𝑎3(𝑐𝑜𝑠2 ‒ 3𝑐𝑜𝑠2𝜃) + 20𝑛𝑃10
𝜇2

𝑎3(𝑐𝑜𝑠2 ‒ 3𝑐𝑜𝑠2𝜃)

       
+ 𝑛 𝐿𝑛

𝜇2

𝑎3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 40𝑛 𝑀𝑛
𝜇2

𝑎3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

       
+ 2𝑛 𝐿𝑛

𝜇2

(2𝑎)3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 2𝑛 𝑀𝑛
𝜇2

(2𝑎)3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

           
+  … + 𝑛𝑅𝑛

𝜇2

(𝑎)3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 𝑛 𝑆𝑛
𝜇2

(𝑎)3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

           
+  10𝑛𝑇𝑛

𝜇2

(𝑎)3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 10𝑛 𝑊𝑛
𝜇2

(𝑎)3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

             
+  10𝑛𝑉𝑛

𝜇2

(𝑎)3(1 ‒ 3𝑐𝑜𝑠2𝜃) + 10𝑛 𝑈𝑛
𝜇2

(𝑎)3(𝑐𝑜𝑠2𝜃 ‒ 3𝑐𝑜𝑠2𝜃)

                                                                                                          + 40𝑛𝜇𝐻𝑐𝑜𝑠𝜃

(9) 

wherein the relevant parameters can be summarized as:
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                                                (10)

𝑅𝑛 =

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛
2

∑
𝑗 = 0

𝑛 ‒ 2𝑗

𝑛( (2𝑅
𝑎 )2 + (2𝑗)2)3

                                        (11)

𝑆𝑛 =

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛 + 1

2

∑
𝑗 = 1

𝑛 ‒ 2𝑗

𝑛( (2𝑅
𝑎 )2 + (2𝑗 ‒ 1)2)3

 ,                         (12)

𝑇𝑛 =
5

∑
𝑁 = 1

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛
2

∑
𝑗 = 0

𝑛 ‒ 2𝑗

𝑛( (2𝑅 + 0.1𝑁𝑅
𝑎 )2 + (0.1𝑁𝑅)2 + (2𝑗)2)3

 ,                           (13)

𝑊𝑛 =

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛 + 1

2

∑
𝑗 = 1

𝑛 ‒ 2𝑗

𝑛( (2𝑅 + 0.1𝑁𝑅
𝑎 )2 + (0.1𝑁𝑅)2 + (2𝑗 ‒ 1)2)3

 ,                      

𝑉𝑛 =
5

∑
𝑁 = 1

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛
2

∑
𝑗 = 0

𝑛 ‒ 2𝑗

𝑛( (3𝑅 + 0.1𝑁𝑅
𝑎 )2 +（0.5𝑅 ‒ 0.1𝑁𝑅) + (2𝑗)2)3

(12)

 ,                         (13)                                                               

𝑈𝑛 =

𝑛 ‒ 1
2

< 𝑛 ≤
𝑛 + 1

2

∑
𝑗 = 1

𝑛 ‒ 2𝑗

𝑛( (3𝑅 + 0.1𝑁𝑅
𝑎 )2 +（0.5𝑅 ‒ 0.1𝑁𝑅) + (2𝑗)2)3

Where 2R=20a is the diameter of nanotubes. We find that variation of the magnetostatic 

energy is less than 10% (about 8%) when we consider tube-tubes interaction (terms 7-

16). This result confirms that the tube-tubes interaction can be neglected.”
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Figure S6. Schematic illustration of the two neighboring nanotubes when the applied 

magnetic field is parallel to the nanotubes. 
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Note 4

The energy of the system achieves the minimum value when the magnetic field reaches 

the coercive field. Thus, the theoretical coercivity can be obtained by calculating the 

equilibrium values of  and  as varying the values of the field H at the fixed , where 

the first derivation for the energy of the system is equal to zero: 

                                                          (14)

∂𝐸𝑛

∂
= 0,

                                              (15)

∂𝐸𝑛

∂
=

∂𝐸𝑚

∂
+

∂𝐸𝑓

∂
= 0,

Which can be expanded respectively as below:         

∂𝐸𝑛

∂

= (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3(sin2 sin2 𝛾sin 2 + 2𝑠𝑖𝑛𝑐𝑜𝑠sin 𝑐𝑜𝑠𝑠𝑖𝑛)

‒ (40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)
𝜇2

𝑎3
sin2 𝛾sin 2 = 0

     

 (16)

∂𝐸𝑛

∂

= 2(60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑅𝑛 + 30𝑛𝑅10)𝜇2

𝑎3(sin2 cos2 sin 𝑐𝑜𝑠 + 𝑠𝑖𝑛 𝑐𝑜𝑠𝑐𝑜𝑠𝑐𝑜𝑠2 ‒ 𝑐𝑜𝑠2sin 𝑐𝑜𝑠)

‒ (40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10) 
𝜇2

𝑎3
sin 𝛾𝑐𝑜𝑠(cos 2 ‒ 1)

‒ 20𝑛𝜇𝐻𝑠𝑖𝑛𝛾 = 0
                                          

 (17)

Then, the roots of Eq.16 can be calculated as below:  

,                                                  (18)𝑠𝑖𝑛 = 0  = 0, 𝜋
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and/or

[(60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)sin2  ‒ (40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)]𝜇2

𝑎3
𝑠𝑖𝑛

𝑐𝑜𝑠 =
1
2(60𝑛𝐾𝑛 +

9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3
𝑠𝑖𝑛2𝑐𝑜𝑠𝑟

   

(19)

In this way, the relation between  and  can be obtained from Eq.19 as below:

                                                    (20)𝑐𝑜𝑠 = 𝐴()𝑐𝑜𝑡

where 

                      (21)

𝐴() =

3(𝐾𝑛 +
9

∑
𝑁 = 1

𝑄𝑛 +
𝑄10

2 )sin 2

6(𝐾𝑛 +
9

∑
𝑁 = 1

𝑄𝑛 +
𝑄10

2 )𝑠𝑖𝑛2 ‒ 4(𝑀𝑛 +
9

∑
𝑁 = 1

𝑃𝑛 +
𝑃10

2
)

 

In addition, the second derivation for the energy of the system is higher than zero when 

the energy of the system is at the minimum value, which can be described as below:

∂2𝐸𝑛

∂2

= (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3(2sin2 sin2 𝛾cos 2 + 2𝑠𝑖𝑛𝑐𝑜𝑠sin 𝑐𝑜𝑠𝑐𝑜𝑠)

‒ 2(40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)𝜇2

𝑎3
sin2 𝛾cos 2 > 0

                                                                                                                                

(22)

Then, the Eq. 22 can be solved in three different conditions (I, II, III) when the angle 

 and , respectively.  𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 0, 𝑎𝑐𝑜𝑠[𝐴()𝑐𝑜𝑡] 𝜋

(I) when ,  = 0
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The Eq. 22 can be simplified to

  (23)            

[2sin2 (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝑠𝑖𝑛2 ‒ 2

(40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)]
𝜇2

𝑎3
𝑠𝑖𝑛2

+ (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3
𝑠𝑖𝑛2𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾 > 0

The angle  is given by: 

                                                  (24)0 <  ≤ 𝑎𝑡𝑎𝑛𝐴()

(II) when   = 𝑎𝑐𝑜𝑠[𝐴()𝑐𝑜𝑡]

The Eq. 22 can be simplified to

                                                                        

[2sin2 (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝑠𝑖𝑛2 ‒ 2

(40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)]
𝜇2

𝑎3
𝑠𝑖𝑛2𝑐𝑜𝑠2

+ (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3
𝑠𝑖𝑛2𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾𝑐𝑜𝑠 > 0

(25)

Then the Eq. 25 can be simplified to 

                           (26)
𝑡𝑎𝑛 >‒ 𝐴()

cos 
cos 2

=
[𝐴()]2𝑐𝑜𝑡𝛾

1 ‒ 2[𝐴()]2𝑐𝑜𝑡2𝛾

Thus,  

                                                                                                      (27) |𝑡𝑎𝑛| > 𝐴()

 

(III)  When ,                                                                     = 𝜋
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 0    (28)

[2sin2 (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝑠𝑖𝑛2 ‒ 2

(40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10)]
𝜇2

𝑎3
𝑠𝑖𝑛2

+ (60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3
𝑠𝑖𝑛2𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾 >

The angle  is then given by: 

                                              (29)             
𝑎𝑐𝑜𝑡( ‒

1
𝐴()) ≤  < 

The fanning mechanism happens in the range II, and this range decreases as increasing 

 until . Then, the magnetization reversal process is completed by the coherent   ≥ 0

rotation mechanism, because there is no solution for Eq.20 when . Thus, the   ≥ 0

polar angle   can be considered as the inflection point from the coherent 𝛾 = 𝑎𝑡𝑎𝑛𝐴()

rotation to the fanning reversal. In addition, the Eq.20 was substituted into Eq.17 for 

exploring the relations between the coercivity and the  in fanning reversal 

mechanism. The first order differential equation is then described as below:  

∂𝐸𝑛

∂

=‒ 2(60𝑛𝐾𝑛 +
9

∑
𝑁 = 1

60𝑛𝑄𝑛 + 30𝑛𝑄10)𝜇2

𝑎3(sin2 𝐴()2𝑐𝑜𝑡2 sin 𝑐𝑜𝑠 + 𝑠𝑖𝑛 𝑐𝑜𝑠𝑐𝑜𝑠2𝐴()𝑐𝑜𝑡 ‒ 𝑐𝑜𝑠2sin 𝑐𝑜𝑠)

+ 2(40𝑛𝑀𝑛 +
9

∑
𝑁 = 1

40𝑛𝑃𝑛 + 20𝑛𝑃10) 
𝜇2

𝑎3
sin 𝛾𝑐𝑜𝑠(𝐴()2𝑐𝑜𝑡2 ‒ 1) ‒ 20𝑛𝜇𝐻𝑠𝑖𝑛𝛾 = 0

                                 (30)  

wherein,

,                                                 (31)
‒

∂𝐸𝑓

∂
= 20𝑛𝜇𝐻𝑠𝑖𝑛𝛾

14



∂𝐸𝑚

∂

= 60𝑛
𝜇2

𝑎3(𝐾𝑛 +
9

∑
𝑁 = 1

𝑄𝑛 +
𝑄10

2 )[𝐴()𝑐𝑜𝑡2𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾sin 2 ‒ sin 2𝑐𝑜𝑠2𝐴()cot  + 𝑐𝑜𝑠2𝑠𝑖𝑛2𝛾]

‒ (40𝑀𝑛 +
9

∑
𝑁 = 1

40𝑃𝑛 + 20𝑃10) 
𝜇2

𝑎3
𝑠𝑖𝑛2𝛾

(32)

Then, the solution for  is obtained by plotting the curves of  vs.  and  vs.   
‒

∂𝐸𝑓

∂

∂𝐸𝑚

∂

respectively, where the point of intersection is the solution for . Note that the values 

of H and  were fixed in the discussion. Thus, we can see the curves and the point of 

intersection when H = 250 Oe, or H = 300 Oe and =30, as shown in Figure S7. 

Finally, the formatted hysteresis loop (cos versus H) and the coercivity versus  can 

be obtained for the fanning reversal (Figure 4c).”

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

 Em/
 Ef/

H=300 Oe
 Ef/

H=200 Oe

In
te

ns
ity

(rad)

tanA

Figure S7. Plotted curves of  vs.  and  vs.   when H = 250 Oe, or H = 300 
‒

∂𝐸𝑓

∂

∂𝐸𝑚

∂

Oe and =30.
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Note 5

The magnetocrystalline anisotropy energy of cubic system can be expressed by:

,                              (33)𝐸𝑘 = 𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2)

x 

y

z



R

r’X

Y

Z

[111]

0

Figure S8. Direction cosines of magnetization in dipolar coordinates.

where 1, 2 and 3 are direction cosines of the magnetic moment with respect to the 

cubic a-, b- and c-axes, respectively. It is well known that the [111] direction is one 

easy axis in the NiFe2O4 as its magnetocrystalline anisotropy constant K10. Thus, the 

angle between [111] direction and x-axis (i.e. 0) equal to  and  (Figure 
𝑐𝑜𝑠 ‒ 1 1

3 𝜀 = 45°

S8). If the magnetic moment deviates from the [111] direction for a small angle  𝛿

(Figure S8), the direction cosines can be rewritten as:

                                              (34)
𝛼1 =

1
2

sin (𝛿0 + 𝛿)

                                              (35)
𝛼2 =

1
2

sin (𝛿0 + 𝛿)

                                              (36)𝛼3 = 𝑐𝑜𝑠⁡(𝛿0 + 𝛿)

According to Eq.31-32, the Eq.30 is converted as 
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                              (37)
𝐸𝑘 = 𝐾[𝑠𝑖𝑛2(𝛿0 + 𝛿) ‒

3
4

𝑠𝑖𝑛4(𝛿0 + 𝛿)]

As the angle between magnetic moment and [111] direction is small, the anisotropy 

energy (Eq.34) reduces to 

                                                  (38)
𝐸𝑘 =

𝐾1

3
‒

2
3

𝐾1𝛿2

where the first term is the energy in easy axis direction, thus we have 

                                        (39) 
𝐸 =‒

2
3

𝐾1𝛿2 =
𝐽𝑠𝐻𝑘

2
𝛿2

where K1 and Js are the magnetocrystalline anisotropy constant and saturation 

magnetic dipole moment per unit volume. Thus effective magnetocrystalline 

anisotropy field in NiFe2O4 given by [3]:

 ,                                                    (40)
𝐻𝑘 =‒

4
3

𝐾1

𝑀𝑠

where Ms is the saturation magnetization. Then, the effective anisotropy field of 

NiFe2O4 is calculated to be 518 Oe, according to the Eq. 40.
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