Supporting Information to

Patching Laser-Reduced Graphene Oxide with Carbon Nanodots

Volker Strauss, Mit Muni, Arie Borenstein, Bolortuya Badamdorj, Tobias Heil, Matthew D. Kowal, Richard Kaner

Sample overview	19
Scanning electron microscopy	20
Raman spectroscopy	21
Transmission electron microscopy and electron energy loss spectroscopy	22
Specific surface area measurements	23
Voltammetry	23
Three-electrode measurements	24
Reference measurements in organic electrolyte	25
Capacitance	25
Galvanostatic charge-discharge measurements	26
Electrochemical impedance spectrosocpy	27

Sample overview

Figure S1. Photograph of precursor solutions of 1, 3, and 6 in NMP after one week under illumination with a laser pointer demonstrating the Tyndall effect.

Figure S2. Percentage of the remaining mass of the films after laser-reduction obtained from a series of experiments (shown in gray).

Scanning electron microscopy

Figure S3. SEM images of laser-converted films of samples 1 - 6 from top left down to bottom right at low-magnification (left) and high-magnification (right), see scale bars.

Figure S4. SEM image of a laser-converted film of sample 6 showing a converted pattern with excess CNDs.

Raman spectroscopy

Figure S5. Averaged Raman spectrum obtained from a map composed of 16 spots (depicted on the right) of laserreduced samples a) 1 and b) 6 using a 633 nm laser as the excitation source.

Figure S6. Lorentz fitting of averaged Raman spectra of laser-reduced samples 1 - 7 (a - g).

Transmission electron microscopy and electron energy loss spectroscopy

Figure S7. Representative TEM images of samples 1, 3 and 6 obtained at an acceleration voltage of 200 kV.

Figure S8. Electron energy loss spectra of samples 1 (black), 3 (red) and 6 (blue).

Specific surface area measurements

Figure S9. UV-vis absorption spectra of the methylene blue stock solution ($c = 4.3 \times 10^{-5}$ M) in black and the same solution after adsorbing. ~0.1 mg of samples 1 - 7.

Voltammetry

Figure S10. Photograph of the laser-reduced films on stainless-steel disks.

Three-electrode measurements

Figure S11. Electrochemical characterization electrodes fabricated from samples 1 (left column), 3 (center), and 6 (right) in 1.0 M Na₂SO₄ using an Ag/AgCl reference electrode; a) Cyclic voltammograms in 1.0 M Na₂SO₄ as electrolyte at different scan rates between 500 and 10 mV s⁻¹; b) Galvanostatic charge discharge curves obtained at different current densities of 7 (blue), 9 (red), and 10 (black) Ag⁻¹ in 1.0 M Na₂SO₄; c) Representative Bode impedance plots of the electrodes in 1.0 M Na₂SO₄ as the electrolyte.

Reference measurements in organic electrolyte

Figure S12. Electrochemical characterization of symmetric coin cell capacitors with different CND/GO mass ratios; a) Representative cyclic voltammograms of coin cell capacitors assembled with electrodes of sample 1 (black) and sample 5 (red) in 0.5 M TBAPF₆ in acetonitrile as electrolyte at a scan rate of 100 mV s⁻¹; b) Specific gravimetric capacitance versus mass fraction of CNDs contained in the precursor solution determined by cyclic voltammetry at a scan rate of 10 mV s⁻¹; c) Representative Nyquist impedance plots of coin cell capacitors assembled with electrodes of sample 1 (black) and sample 5 (red) in 0.5 M TBAPF₆ in acetonitrile as the electrolyte; d) Representative Phaseangle diagrams of coin cell capacitors assembled with electrodes of sample 1 (black) and sample 5 (red) in 0.5 M TBAPF₆ in acetonitrile as the electrolyte;

Capacitance

Figure S13. Specific gravimetric capacitances of samples 1 - 7 as a function of the scan rate in 6.0 M KOH (left) and in 0.5 M TBAPF₆ in acetonitrile as electrolyte (right).

Galvanostatic charge-discharge measurements

Figure S14. Galvanostatic charge discharge curves of samples 1 and 6 obtained at different current densities in 6.0 M KOH (left) and 0.5 M TBAPF₆ in acetonitrile (right).

Figure S15. Specific gravimetric capacitances of samples 1 - 7 as a function of the current density in 6.0 M KOH (*left*) and in 0.5 M TBAPF₆ in acetonitrile as electrolyte (right).

Figure S16. Capacitance retention of capacitor cells with sample 1 (black) and sample 6 (red) in 6.0 M KOH after 20,000 charge discharge cycles. Inset: Galvanostatic charge discharge curves of sample 6 obtained with a current density of 7.5 A g⁻¹.

Electrochemical impedance spectrosocpy

Figure S17. Representative Bode plot of a commercial activated carbon based EDLC.

Figure S18. Left: Nyquist impedance plots of coin cell capacitors assembled with electrodes of samples 1 - 7 in 6.0 *M KOH as electrolyte; Right: Phase angle plots of coin cell capacitors assembled with electrodes of samples* 1 - 7 in 6.0 *M KOH as the electrolyte.*

Figure S19. Left: Nyquist impedance plots of coin cell capacitors assembled with electrodes of samples 1 - 7 in 0.5 *M* TBAPF₆ in acetonitrile as the electrolyte; Right: Phase angle plots of coin cell capacitors assembled with electrodes of samples 1 - 7 with 0.5 *M* TBAPF₆ in acetonitrile as the electrolyte.