Supporting Information

Surface Plasmon Resonance Enhanced Direct Z-Scheme TiO₂/ZnTe/Au Nanocorncob Heterojunctions for Efficient Photocatalytic Overall Water Splitting

Authors:

Wenjun Zhang, Yi Hu, Changzeng Yan, Daocheng Hong, Renpeng Chen, Xiaolan Xue, Songyuan Yang, Yuxi Tian, Zuoxiu Tie, and Zhong Jin*

Affiliations:

Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China.

*Address correspondence to: <u>zhongjin@nju.edu.cn</u> (Prof. Z. Jin).

Fig. S1. XRD pattern of $TiO_2/ZnTe/Au$ nanocorncobs after the photocatalytic water splitting of 72 h (Blue triangle and pink square signs represent TiO_2 and ZnTe, respectively).

Fig. S2. ESR spectra of $TiO_2/ZnTe/Au$ nanocorncobs with DMPO obtained under both dark and light illumination (a) in methanol to detect DMPO- O_2^- radical species; (b) in aqueous suspension to detect DMPO-OH radical species.

Table S1. Performance comparison of $TiO_2/ZnTe/Au$ nanocorncobs for solar-tohydrogen (STH) efficiency in photocatalytic water splitting testing with other nanostructural photocatalysts in the literatures.^{S1–S6}

Ref.	Electrocatalyst	Incident light	STH efficiency (%)
This work	TiO ₂ /ZnTe/Au nanocorncobs	Solar simulator (AM 1.5)	0.98
S1	Te/SnS ₂ /Ag nanoleaves	Solar simulator (AM 1.5)	0.49
S2	NCN/CDs-1000	Solar simulator (AM 1.5)	0.1
S 3	CDots-C ₃ N ₄	Solar simulator (AM 1.5)	2.0
S4	Mesoporous carbon nitride	Natural sunlight irradiation	0.12
S5	SrTiO ₃ :La,Rh/C/Bi VO ₄ :Mo	Simulated sunlight irradiation	1.0
S6	SrTiO3:La,Rh/Au/ BiVO4:Mo sheet	Visible light (419 nm)	1.1

Fig. S3. (a) UV-Vis spectra of TiO₂ nanowires and TiO₂/Au nanowires at the range of 370-700 nm, respectively. (b) Linear sweep voltammetry measurements of TiO₂ nanowires and TiO₂/Au nanowire photoanodes under dark and light illumination of a 300 W Xe-lamp irradiation (350-800 nm, 96 mW·cm⁻²) coupled with a 550 nm monochromatic light optical filter at a scan rate of 50 mV s⁻¹.

REFERENCE

- S1. C. Z. Yan, X. X. Lan, W. J. Zhang, X. J. Li, J. Liu, S. Y. Yang, Y. Hu, R. P. Chen, Y. P. Yan, G. Y. Zhu, Z. H. Kang, D. J. Kang, J. Liu and Z. Jin, *Nano Energy*, 2017, **39**, 539–545.
- S2. C. Zhu, M. M. Zhu, Y. Sun, Y. J. Zhou, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong,
 Y. Liu and Z. H. Kang, *Appl. Catal. B-Environ.*, 2018, 237, 166–174.
- S3. J. Liu, Y. Liu, N. Liu, Y. Z. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong and Z. H. Kang, *Science*, 2015, 347, 970–974.
- S4. M. Schröder, K. Kailasam, J. L. Borgmeyer, M. Neumann, A. Thomas, R. Schomäcker and M. Schwarze, *Energy Technol.*, 2015, 3, 1014–1017.
- S5. Q. Wang, T. Hisatomi, Y. Suzuki, Z. H. Pan, J. S. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada and K. Domen, *J. Am. Chem. Soc.*, 2017, **139**, 1675–1683.
- S6. Q. Wang, T. Hisatomi, Q.X. Jia, H. Tokudome, M. Zhong, C. Z. Wang, Z. H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. B. Li, L. D. Sharp, A. Kudo, T. Yamada and K. Domen, *Nat. Mater.*, 2016, **15**, 611–615.