Electronic Supplementary Information (ESI)

The origin of instinct charge transport for Dirac carbon sheet materials:

Roles of acetylenic linkage and electron-phonon couplings

Changdong Liu^{a,b}, Jiong Yang^b, Jinyang Xi^{b,*}, Xuezhi Ke^{a,*}

^aSchool of Physics and Material Sciences, East China Normal University, Shanghai 200241, China ^bMaterials Genome Institute, Shanghai University, Shanghai 200444, China *Corresponding authors: jinyangxi@t.shu.edu.cn; xzke@phy.ecnu.edu.cn

Fig. S1 Electron average velocity (a), average scattering time (b) and mobility (c) computed with respect to varying density of \mathbf{k}/\mathbf{q} -point grids.

Fig. S2 Electron mobility (a-c) and scattering time at Dirac point (d-f) of TA/LA together with the fitting line for α -GY, α -GDY and β -GY, respectively.

D _{6h}	E	2C ₆	2C ₃	C ₂	3C ₂	3 <i>C</i> ₂	i	2S ₃	2S ₆	σ_h	$3\sigma_d$	3σ _v
$\Gamma_{N(1)}$	3m	0	0	0	(2-m)/3-2	0	0	-4	0	m	0	(m-2)/3+2
$\Gamma_{N(2)}$	3m	0	0	0	0	-2	0	0	0	m	2	0
E _{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0

Table S1 Character table of reducible representation and E_{2g} irreducible representation for these Dirac materials.

Where $\Gamma_N(1)$, $\Gamma_N(2)$ are the reducible representation for structure with uniform acetylenic linkages (i.e., graphene, α -GY, α -GDY) and un-uniform acetylenic linkages (i.e., β -GY), respectively. m is the total number of atom, satisfying m=2n+2 for uniform acetylenic linkages and m=2n+6 for un-uniform acetylenic linkages, where n is the number of acetylenic linkages. It is easy to use equation

$$N_{\alpha} = \frac{1}{g} \sum_{G} C_{G} \chi(G) \chi^{*}(G)$$
(S1)

which shows how many times a given irreducible representation α is contained in a

reducible one. Therefore, we can obtain the number of E_{2g} modes $N(E_{2g}) = \frac{1}{3}(2n+3)$

for graphene, α -GY, α -GDY and $N(E_{2g}) = \frac{1}{3}(2n+6)$ for β -GY.

Lattice Vibration and Charge Transport

Fig. S3 The vibrational direction and amplitude of all the phonon modes at Γ together with EPC strength for α -GY. The strength of ZA/TA/LA phonon modes are forced to set to zero due to acoustic sum rule.

The vibration of the 3 acoustic phonon and 21 optical phonon at Γ are shown in Fig. S1. Apparently, vibration along the chemical bond direction tends to cause a large EPC strength and vibration perpendicular to the bond leads to a small EPC strength. In particular, phonon vibration out-of-plane will have no interaction with electron and get λ =0, which is agreeing well with our group analysis.

Fig. S4 The vibration of ${}^{2}E_{2g}^{L}$ mode together with the charge density at different **q** points along **\Gamma-K-M-\Gamma** for α -GY.

As shown in Fig. S2, at the high symmetry point Γ and **K**, the phonon vibrates along the direction of the chemical bond (red arrow), indicating that the vibrations are easier to destroy the overlap of π orbital and damage charge transport channel, and we find a large EPC strength (~0.1), as expected. Conversely, at the **Q** and **M**, the phonon vibrates at an angle to the chemical bond direction (red arrow), implying the overlap of π orbital is weakly destroyed. Indeed, the corresponding EPC is relatively small.

Fig. S5 Phonon scattering time from EPC at different carrier connections for α -GY at room temperature.