Supplementary

Rational design of sandwich-like MnO₂-Pd-CeO₂ hollow spheres with

enhanced activity and stability for CO oxidation

Jian Zhang¹, Tong Li¹, Chang-An Wang^{1*}, Jing-Li Luo^{2*}

¹ State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and

Engineering, Tsinghua University, Beijing 100084, China

² Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta

T6G 1H9, Canada

Synthesis of CeO₂-Pd hollow spheres.

Typically, 50 mg carbon sphere templates were dispersed in 30 mL ethyl alcohol under ultra-sonication to obtain homogenous slurry and subsequently, 15 mL homogeneous Pd colloidal solution was added. After 6 hours of stirring at room temperature, 30 ml mixed solution composed of 100mg Ce(NO₃)₃.6H₂O and 100 mg HMT was poured into the CSs@Pd slurry, followed by reflux at 75°C for 4 h. Finally, the as-prepared CSs@Pd@CeO₂ precursor was separated by filtration and then calcinated at 450°C in air for 2h to achieve CeO₂-Pd hollow spheres.

Synthesis of MnO₂-Pd hollow spheres

Firstly, 50mg carbon spheres and 15ml Pd colloidal solution were dispersed in 50ml deionized water by sonication treatment and then stirred at room temperature for 6 hours. In the next, 100mg KMnO₄ was add to the homogenous slurry and keep heating at 80°C for 2h. Finally, the dark brown CSs@ MnO₂-Pd precursor was collected by filtration, then the MnO₂-Pd hollow spheres were obtained by annealing the precursor in air at 450°C for 2h.

Figure S1 SEM images of carbon spheres

Figure S2 SEM images of CSs@Pd(a), CSs@Pd@CeO₂(b), CSs@ MnO₂@Pd@CeO₂(c) and MnO₂-Pd-CeO₂ particles.

Figure S3 TEM images of CSs@Pd(a), CSs@Pd@CeO₂(b), CSs@ MnO₂@Pd@CeO₂(c) and MnO₂-Pd-CeO₂ particles.

Figure S4 HR-TEM images of MnO₂-Pd-CeO₂ hollow spheres (In the red circle are Pd particles).

Element	Weight%	Atomic%
O K	23.30	58.34
Mn K	44.26	32.28
Pd L	1.18	0.44
Ce L	31.26	8.94
Totals	100.00	

FigureS5 SEM images and corresponding EDS spectrum of MnO_2 -Pd-CeO₂ hollow spheres

FigureS6 XRD spectra of MnO₂-Pd-CeO₂, MnO₂-CeO₂ and CeO₂

Figure S8 HAADF-STEM image of Pd/MnO₂ -CeO₂ hollow spheres and corresponding maps of O, Mn, Pd and Ce.

Figure S9 TEM images of MnO₂-Pd (a,b) and CeO₂-Pd hollow spheres.

Figure S10 SEM, TEM and HAADF-STEM images of MnO₂-Pd-CeO₂ hollow spheres after catalytic reaction

Figure S11 N₂ adsorption-desorption isotherms of MnO₂-Pd-CeO₂ hollow spheres

Figure S12 the influence of $Ce(NO_3)_3.6H_2O(43,53 \text{ and } 63mg)$ concentration on the catalytic performance of sandwich-like MnO_2 -Pd-CeO₂ hollow spheres catalyst

FigureS13 (a) SEM images of CS@ MnO_2 -Pd-Ce $O_2(43mg)$ yolk-shell spheres; (b) TEM image of CS@Pd-Ce $O_2(53mg)$ spheres.

Figure S14 XPS spectra of catalyst after reaction

The XPS spectra of MnO₂-Pd-CeO₂ hollow spheres before and after catalytic reaction (after cycle and stability test) were demonstrated in figure S14. As shown in figure S14a,

peaks denoted as $V_0 V_1$, $V_2 (3d5/2)$, V_0' , V_1' , $V_2' (3d3/2)$ were assigned to Ce(**IV**) species, while peaks labeled as U_0 , U_1 , U_0' and U_1' corresponded to Ce(**III**) species.¹⁻³

Before catalytic reaction, only $Ce(\mathbf{IV})$ species existed in the samples as mentioned in manuscript. But after a long time reaction, the characteristic peaks of Ce(III) species appeared in the catalyst. A similar phenomenon was also found in Mn2p spectra, the Mn2p peaks shifted to lower binding energy and a distinct Mn(III) characteristic peak can be found after catalytic reaction, where peaks noted as Vo and Uo was assigned to

Mn(IV) and Mn(III) respectively (figure S14 b).⁴ However, no significant changes were

found in Pd3d spectrum after reaction and Pd species still existed mainly in a Pd^{2+} ionic state (figure S14 C). Combining the above results, we can speculate that the lattice oxygen at the interface (Pd/MnO₂ and Pd/CeO₂ interface) other than the adsorbed active oxygen also participates in the catalytic reaction.⁵ In brief, the extraction of lattice oxygen leads to the appearance of trivalent metal species. However, this result is difficult to reflect the whole catalytic reaction process.

Reference

- (1) X. Liu, K. Zhou, L. Wang, B. Wang and Y. Li, J. Am. Chem. Soc. 2009, 131, 3140–3141.
- (2) M. M. Natile, G. Boccaletti, A. Glisenti, Chem. Mater. 2005, 17, 6272.
- (3) L. Qiu, F. Liu, L. Zhao, Y. Ma, J. Yao, Appl. Surf. Sci. 2006, 252, 4931.
- (4) J. S. Park, D. S. Doh, K. Y. Lee, Top Catal, 2000, 10, 127-131.
- (5) B. Liu, J. Liu, T. Li, Z. Zhao, X. Q. Gong, Y. Chen, Y. Wei, *J Phys Chem C*,2015, 119, 12923-12934.