Supporting Information

Co-delivery of paclitaxel and melittin by glycopeptide modified lipodisks for synergistic anti-glioma therapy

Huan Wang^{a,b,c,} Songli Wang^b, Ruifeng Wang^b, Xiaoyi Wang^b, Kuan Jiang^b, Cao Xie^b, Changyou Zhan^{b,c}, Hao Wang^{d,*}, Weiyue Lu^{a,b,e,f,*}

^a Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Acadimic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China.

^b Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), Fudan University, Shanghai 201203, China.

^c Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.

^d National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.

^e Institute of Integrative Medicine of Fudan University, Shanghai 200041, China.

^f State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.

* Corresponding Authors:

E-mail: wylu@shmu.edu.cn (WY Lu); wanghao10@sinopharm.com (H Wang)

Preparation and characterization of lipospheres

The lipospheres were prepared using the same method like lipodisks except the composition of POPC/cholesterol/mPEG₂₀₀₀-DSPE/⁹G-A7R-PEG₃₄₀₀-DSPE (55:40:3:2, mol%). The morphology of lipospheres was characterized by cryogenic transmission electron microscope (Cryo-TEM) investigations using a FEI Tecnai G20 Transmission Electron Microscope (FEI, Hillsboro, USA). Size (diameter, nm) and polydispersity index (PDI) were measured by dynamic light scattering using a Zen 3600 Zetasizer (Malvern).

Biodistribution of lipodisks and liposoheres in vivo

To evaluate the tumor targeting efficiency of lipodisks and lipospheres, the subcutaneous xenograft tumor models were established by inoculation of 4×10^6 U87MG cells (cells suspended in 100 µL PBS) into the subcutaneous tissue of the right subaxillary of male Balb/c nude mice. After two weeks when the tumor volume was about 200 mm³, the mice were injected with 100 µL of DiD-loaded lipodisks or lipospheres phosphate buffer. After 48 h of injection, blood, main organs and tumor tissues were collected and homogenized for fluorescence analysis by a microplate reader (Power Wave XS, Bio-TEK, USA).

Hemodynamics of the lipodisks and lipospheres

The kinetic properties of lipodisks and lipospheres were analyzed in ICR mice. Mice were injected with 100 µL DiD-loaded lipodisks or lipospheres via tail vein. At the time points of 1, 5, 10, 15, 30 min and 1, 2, 4, 8, 12, 24, 48, 72 h post injection, 50 µL blood was sampled from the retro-orbital sinus. The blood samples were diluted 4 times for fluorescence quantification by a microplate reader (Power Wave XS, Bio-TEK, USA). The pharmacokinetic parameters were analyzed by DAS2.0.

Figure S1. Morphology and size characterization of ⁹G-A7R-Disk (A,C) and ⁹G-A7R-Sphere (B,D) by Cryo-TEM and malvern laser particle size analyzer.

Figure S2. Biodistribution of 9 G-A7R-Disk and 9 G-A7R-Sphere in subcutaneous U87 xenograft bearing mice 48 h post injection (Mean ± SD, n = 3, ***p<0.001).

Figure S3. Blood dynamics of ⁹G-A7R-Disk and ⁹G-A7R-Sphere. Mean Residence Time (MRT) was calculated with the software DAS2.0.