Supporting Information for

High performance Tin Diselenide photodetectors dependent on thickness:

Vertical graphene sandwiched device and interfacial mechanism

Wei Gao¹, Zhaoqiang Zheng^{1*}, Yongtao Li¹, Yu Zhao¹, Liang Xu³, Huixiong Deng^{2*},

Jingbo Li^{1,2*}

¹ School of Materials and Energy, Guangdong University of Technology, Guangzhou

510006, P. R. China.

² State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China.

³ Zhejiang Bright Semiconductor Technology Co. Ltd., Jinhua, Zhejiang, 321000, P.

R. China.

* Corresponding authors: zhengzhq5@mail2.sysu.edu.cn; hxdeng@semi.ac.cn; and jbli@semi.ac.cn

Fig. S1 Optoelectrical characteristics of the Gr-SnSe₂ (256 nm)-Gr heterostructure. (a) Optical image of the heterostructure. The scale bar is 5 μ m. (b) Atomic Force microscopy (AFM) topography at the interface of the top graphene and SnSe₂. (c) The corresponding thickness of the SnSe₂ and top graphene from (d) Responsivity and photocurrent density by 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V. (e) EQE and Detectivity as a function of light power density. (f) Rising and decay time of the Gr-SnSe₂-Gr under a 532 nm laser as a function of light power density under V_{ds} = 0 V. (g) Responsivity and photocurrent density by 635 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0.5 V.

Fig. S2 (Opto) electrical characteristics of the vertical Gr-SnSe₂ (12.2 nm)-Gr heterostructure. (a) Optical image of the heterostructure. The scale bar is 5 μ m. (b) Atomic Force microscopy (AFM) topography at the interface of SnSe₂. (c) The corresponding thickness of SnSe₂ from (d) Output characteristic curves of the device under V_g from 80 V to -80 V. (e) Transfer characteristic curves of the device correlated to V_g. (f) Responsivity by 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V.

Fig. S3 (Opto) electrical characteristics of the vertical Gr-SnSe₂ (30.1 nm)-Gr heterostructure. (a) Optical image of the heterostructure. The scale bar is 10 μ m. (b) Responsivity by 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V.

Fig. S4 (Opto) electrical characteristics of the vertical Gr-SnSe₂ (196 nm)-Gr device. (a) Optical image of the heterostructure. The scale bar is 10 μ m. (b) Atomic Force microscopy (AFM) topography at the interface of SnSe₂ and the corresponding thickness of the SnSe₂ along the yellow line. (c) Transfer characteristic curves of the device under V_g from 80 V to -80 V. (e) Responsivity and photocurrent density by a 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V. (f) Rising and decay time of the device under a 532 nm illumination at V_{ds} = 0.5 V, V_g = 0 V.

Fig. S5 Thickness-dependent responsivity of SnSe₂ nanoflakes.

Fig. S6 Optoelectrical characteristics of the Gr-SnSe₂ (96.5 nm)-Gr heterostructure. (a) Responsivity and photo-current density as a function of light power density. (b) Light power density dependence of the photocurrent.

Fig. S7 Electrical properties of the FETs devices for graphene. (a) I_{ds} - V_{ds} characteristic curves without the gate voltage. (b) Transfer curves. (c) Output curves. The scale bar is 10 μ m.

Fig. S8 (Opto) electrical characteristics of the horizontal SnSe₂ (242 nm) device. (a) Atomic Force microscopy (AFM) topography at the interface of SnSe₂ and the corresponding thickness of the SnSe₂ along the yellow line. (b) Output characteristic curves of the device under V_g from 80 V to -80 V. (c) Transfer characteristic curves of the device correlated to V_g. (d) Responsivity and photocurrent density by a 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V. (e) EQE and Detectivity as a function of light power density. (f) Rising and decay time of the device under a 532 nm illumination at V_{ds} = 0.5 V, V_g = 0 V.

Fig. S9 (Opto) electrical characteristics of the horizontal SnSe₂ (208 nm) device. (a) Atomic Force microscopy (AFM) topography at the interface of SnSe₂ and the corresponding thickness of the SnSe₂ along the yellow line. (b) Output characteristic curves of the device under V_g from -80 V to 80 V. (c) Transfer characteristic curves of the device correlated to V_g. (d) Responsivity and photocurrent density by a 532 nm laser as a function of light power density under V_{ds} = 0.5 V, V_g = 0V. (e) EQE and Detectivity as a function of light power density. (f) Rising and decay time of the device under a 532 nm illumination at V_{ds} = 0.5 V, V_g = 0 V.

Fig. S10 (Opto) electrical characteristics of the Gr-SnSe₂ (256 nm)-Gr compared to the horizontal SnSe₂ (242nm) device under $V_{ds} = 0.5 \text{ V}$, $V_g = 0 \text{ V}$. (a) I_{ds} - V_{ds} curve of the device. (b) Output characteristic curves of the device under V_g from -80 V to 80 V. (c) Responsivity by 532 nm laser as a function of light power density. (d) EQE and Detectivity as a function of light power density. (e) Time trace of SnSe₂ (top) and Gr-SnSe₂-Gr (bottom) under a 532 nm illumination. (f) Rising and decay time of the device under a 532 nm illumination.

Fig. S11 The I_{ds} -V_g curves under 532 nm illumination as a function of light power density.

Fig. S12 (Opto) electrical characteristics of the vertical Gr-SnSe₂(~100 nm)-Gr device. (a) Optical image of the heterostructure. The scale bar is 5 μ m. (b) Transfer characteristic curves of the device correlated to V_g. (c) Output characteristic curves of the device under V_g from 80 V to -80 V. (d) I_{ds}-V_{ds} curve under dark condition. (e) The I_{ds}-V_g curves under 532 nm illumination as a function of light power density. (f) Responsivity and photo-current density as a function of light power density.

Fig. S13 Electrical properties of the Vertical Gr-SnSe₂-Gr devices dependent on different thickness: Logarithmic output characteristic curves of the device under V_g from 80 V to -80 V. (a) 96.5 nm. (b) 256 nm.

Materials	Measurement	Responsivit	EQE	D*	Response	Ref.
	condition	y (A/W)	(%)	(Jones)	time	
Graphene-thick	532 nm	1.3×10 ³	3×10 ⁵	1.2×10^{1}	38.2 ms	This
SnSe ₂ -Graphene	$V_g = 80 V$			2	/32 ms	wor
	$V_{ds} = 0.5 V$					k
Graphene-MoTe ₂	1064 nm	0.11	12.9	/	24 µs	1
-Graphene	$V_{g} = 30 V$					
	$V_{ds} = 0 V$					
Graphene-n-InSe	633 nm	10 ⁵	105	1013	/	2
-Graphene	$V_g = 0 V$					
	$V_{ds} = 2 V$					
Graphene-MoS ₂	514 nm	/	25	/	50 µs	3
-Graphene	$V_{g} = -60 V$					
	$V_{ds} = 0.5 V$					
Graphene-p-GaSe/	410 nm	350	/	3.7×10^{1}	2 µs	4
n-InSe-Graphene	$V_g = 0 V$			2		
	$V_{ds} = 2 V$					
Graphene-Ta ₂ O ₅	532 nm	10 ³	/	/	0.75 s	5
-Graphene	$V_{ds} = 1 V$					

 Table S1 Comparison of figures-of-merit for vertical graphene-photodetectors based

on 2D layered materials

Graphene-WSe ₂ /	520 nm	6.2 ± 0.2	1490±	/	30 µs	6
GaSe-Graphene	$V_g = 0 V$		50			
	$V_{ds} = -1.5 V$					
Graphene-	410 nm	149	/	4.3×101	37 µs/43	7
GaSe/WS ₂ -	$V_g = 0 V$			2	μs	
Graphene	$V_{ds} = 2 V$					
Graphene-WSe ₂	759 nm	/	7.3	/	1.6 ns	8
-Graphene	$V_g = 0 V$					
	$V_{ds} = 0.5 V$					
h-BN-Graphene-	532 nm	0.12	34	/	/	9
MoS ₂ /WSe ₂ -	$V_g = 0 V$					
Graphene	$V_{ds} = 0 V$					

References

- K. Zhang, X. Fang, Y. Wang, Y. Wan, Q. Song, W. Zhai and L. Dai, ACS Appl. Mater. Inter., 2017, 9, 5392-5398.
- G. W. Mudd, S. A. Svatek, L. Hague, O. Makarovsky, Z. R. Kudrynskyi, C. J. Mellor and E. E. Vdovin, *Adv. Mater.*, 2015, 27, 3760-3766.
- W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang and X. Duan, Nat. Nanotechnol., 2013, 8, 952-958.
- F. Yan, L. Zhao, A. Patanè, P. Hu, X. Wei, W. Luo and K. Chang, Nanotechnology, 2017, 28, 27LT01.
- 5. C. Liu, Y. Chang, T. B. Norris and Z. Zhong, Nat. Nanotechnol., 2014, 9, 273-278.
- 6. X. Wei, F. Yan, Q. Lv, C. Shen and K. Wang, Nanoscale, 2017, 9, 8388-8392.
- 7. Q. Lv, F. Yan, X. Wei and K. Wang, Adv. Opt. Mater., 2018, 6. 1700490.
- M. Massicotte, P. Schmidt, F. Vialla, K. G. Schädler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K. J. Tielrooij and F. H. Koppens, *Nat. Nanotechnol.*, 2016, 11, 42-46.

C. H. Lee, G. H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone and P. Kim, *Nat. Nanotechnol.*, 2014, 9, 676-681.