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Supporting Information Note 1. Numerical calculation of ( , )r z  and ( )   in the device. 

We solve the non-linear Poisson’s equation, described by Eq. 1, in the z=0 plane (i.e. the graphene 

plane) in cylindrical coordinates by a numerical method. The graphene sheet is grounded at a 

distance far away from the metal-graphene interface. Rotational symmetry is assumed along the 

azimuthal angle  and the graphene layer is  located between z = 0 and z = tG (Fig.2).  The borders 
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of the calculation region fulfill Neumann-like condition 0
d

dn


   (vanishing electric field, blue 

dashed lines in Fig. 2b), where n  is the direction normal to the border, except metal-like borders 

(red dashed and green dashed-dotted lines in Fig. 2b). Dirichlet-like conditions with a known 

potential, i.e. gV   are imposed for the back-gate. Meanwhile, perfect metal (PM) boundary 

conditions are imposed in the metal island [S1]. This is due to the fact that the island is, in principle, 

at an unknown potential given by the actual charge of the cluster. The latter depends not only of the 

charge in the graphene layer, but also on the finite size of the island (i.e. size, shape and density of 

states, DOS) [S2]. For the present study, we consider p-n junctions where lengths of both p an n 

regions are well above the junction width w. This is, in our case such junctions are created by thin-

film metallic islands on graphene (i.e. cylinders or stripes) with feature sizes (radius or width) > 10 

nm.  This condition (large cluster size) guarantees the DOS of the metal islands to be that one of the 

bulk metal, as demonstrated below in Note 2. 

We further note that to avoid an erroneous calculation of the simulated out-of-plane field, 

electrostatic potential and junction widths due to Neumann boundary conditions [S3], our 

simulation region (± rmax , ± zmax) is much larger than the calculated widths w  [S3], at least by an 

order of magnitude. In particular (Fig. S1), (± rmax = 250 nm,  ± zmax = ts = 300 nm). 

The total free surface density 𝜎 depends on the carrier densities in valance p band and conduction n 

bands: 

( )q p n   .  (Eq. S1) 

These surface densities p and n are deduced from the typical linear dispersion of graphene and the 

Fermi-Dirac thermal distribution and can be expressed in terms of the electrostatic potential   as: 
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Where DE  is the Fermi energy at the Dirac point, q  is the elementary charge, Bk  is the Boltzmann’s 

constant and T is the absolute temperature of the device. 
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 is the density of states of 

the graphene sheet, thus, we take into account quantum capacitance effects in the system. These 

effects may cause [S4] lack of screening at these p-n interfaces where the quasiparticle density is 

very small (see Supplementary Information Note 4). Finally, 1
0

( )
1 u x

u
F x du

e






   is the first order 

complete Fermi-Dirac integral. The solution of the 2D Poisson’s equation with the corresponding 

boundary conditions is obtained by using an algorithm based on the Gauss-Newton iteration scheme 

applied to the finite element matrix coming from a finite element mesh.  

 

The out of the plane equipotential lines for an exemplary situation corresponding to a symmetric pn 

junction are shown in the Fig. S1. Furthermore, we have considered that the graphene has a 

thickness of Gt  = 0.5 nm and an in-plane relative dielectric permittivity of  G  = 4 [S5, S6]. Also, 

the thickness dt  and the relative dielectric permittivity of the dipole layer between the metal and the 

graphene d , are chosen to be 0.3 nm and the vacuum permittivity 0 , respectively [S7]. 

 



 

Figure S1.  Equipotential lines at metal-graphene interfaces. (a) and (b) Equipotential lines in a 

graphene device at a metal-graphene interface and surrounding environment in the plane r-z (the 

sketch of the device is shown in Fig.2b).  

 

 

Finally, we have double checked the validity of this electrostatic model for three cases:  

(i) Confirming the values of E q   given by our model to the thermodynamic stability analysis 

proposed in Ref [S7]. In both cases E ~ -0.2 eV for a symmetric lateral p-n junction created in 

graphene by Ti as metal (see Fig. 2c, main text and Supporting Information Note 3).  

 

(ii) Confirming that our electrostatic model gives similar junction widths w to the ones reported in 

literature in devices with multiple-gates, for instance, when a lateral p-n junction created in 

graphene encapsulated between hexagonal boron nitride (hBN) with a local top gate and a global 

bottom-gates in the device as done in Ref. [S8]. Incorporating the simulation parameters from Ref. 

[S8] in our electrostatic model, having a thickness of the top hBN = 15 nm and being the 

permittivity of this material 3.9, we obtain a w ~ 25nm, very close to the value reported in [S8] 

(~24nm). 



(iii) Verifying our model with experiments. Scanning tunneling microscope (STM) is a high-

resolution technique that can be employed to probe accurately the width of p-n junctions created at 

metal-graphene interfaces [S9]. Sharp p-n junctions with potential steps of the order of ~0.1 eV and 

w ∼ 1-3 nm have been measured via scanning tunneling microscopy (STM) in continuous graphene 

sheets placed on copper [S9], where the differently doped graphene regions occur at the interface of 

copper surfaces having different surface potentials.  

We have performed electrostatic simulations of a graphene sheet on two different metals, 

configuration showing potential steps of the order of  ~0.1 eV, i.e. similar conditions to those 

reported in Ref. [S9]. Fig. S2 shows the simulated p-n junctions with widths ~ 2.8 nm, i.e.  very 

similar to the width measured by STM. 

 

 

Figure S2. Width w of lateral p-n junctions created in graphene supported by two metals with 

different surface potentials.  In-plane (z = 0) potential energy -q ( )x  in the graphene layer across 

the interface (x = 0) between the first and the second metal. The graphene-metal separation 

distances in this case are, td1 = 0.3 nm and td2 = 0.5 nm for metals 1 and 2, respectively, similar to 



experiments [S9]. In this case, the simulated w = 2.8 nm, a value which is similar to the widths 

measured via STM [S9]. 

 

 

Supporting Information Note 2. Effect of finite size on the density of states of metal islands. 

The level of doping of a graphene sheet in the presence of metal islands in a field effect transistor 

configuration depends not only on the bulk work functions of the different components of the 

system (metal,graphene) and the gate voltage applied to the device [S7], but also on a parameter 

that characterizes the chemical interaction between the graphene sheet and each individual cluster 

[S2]. Such parameter is subsequently determined by two contributions [S2]: the first one due to the 

induced surface dipole of graphene and of the metallic islands (together with other components of 

the system such as gate electrode); and the second one is the correction to the density of states of a 

cluster due to its finite size and specific shape. In the present study, we consider large metal clusters 

(i.e. metallic islands), where finite-size corrections to the bulk density of states DOS(
Bulk

FE ) of the 

metal island at the Fermi level 
M

FE  do not need to be introduced in our model. We show here that 

such corrections do not play a major role for metal islands larger than 10 nm. Specifically, 

considering a spherical metal cluster and using a free-electron gas approximation, finite-size 

corrections to the bulk density of states are given by [S2] :  M

FDOS E  =    * 23 8Bulk

FDOS E m R , 

where 
*m  is the effective mass of the metal atoms. Figure S3 depicts the  DOS(

M

FE ) of an spherical 

Ti cluster depending on the radius R, showing how  M

FDOS E  and  Bulk

FDOS E  display close values 

(  M

FDOS E  > 0.96 *  Bulk

FDOS E ) for spherical clusters with R > 10 nm.  



 

Figure S3.  Corrections to the density of states (DOS) of a spherical metallic cluster made from Ti 

with radius R.  

 

 

Supporting Information Note 3. Estimation of E  from a thermodynamic stability analysis. 

In order to get a better understanding of the electrostatics of lateral p-n junctions at metal-graphene 

interfaces in graphene field-effect devices, we consider a thermodynamic stability analysis of the 

problem in the two graphene regions: underneath the metal and outside the metal, both of which 

need to be also in equilibrium with the overall back gate. The model is based on the imposition of 

thermodynamic equilibrium between the components of the system and allows us to estimate E  

(or ) and to obtain the specific back-gate voltage 
gV  where a symmetrically doped (bipolar) p-n 

junctions is established in the device (i.e. the condition where the Fermi level / 2FE E ).  Before 

proceeding further, we note that graphene is modelled here as an infinite sheet, not considering 

finite-size effects such as inhomogeneous gating due to fringing electrostatic fields at the edges of 

the graphene sheet [S10]. Also, this model is exclusively valid away from the actual lateral junction. 

We then consider the two graphene regions underneath and outside the metal: 

 



Graphene region underneath the metal 

Fig. S4 shows the band diagram of the metal (M), dipole layer (DL), graphene (G), dielectric (D), 

back-gate (BG) vertical structure [S7,S11], where a p-type doped graphene has been assumed as a 

result of the metal-graphene interaction and the back-gate voltage, without loss of generality. Here 

WM, WG and WBG are the metal, graphene and back-gate work functions, respectively, ΔVox is the 

voltage drop across the gate oxide, ΔV the voltage drop across the dipole layer formed between 

graphene and metal, 
( )m

g  is the Fermi energy variation of graphene underneath the metal, 

determined as a function of VG by solving the following set of Eqs. S3. These equations rise from 

the following conditions: i) the total charge density in the vertical heterostructure, including the 

metal surface charge density QM, the graphene layer surface charge density QG  and the back gate 

surface charge density QBG  must be zero (Eq.S3a) and ii) the sum of voltage drops around any loop 

(see Fig. S4) from the band diagram should be equal to zero (Eqs.S3b,c): 

0M G BGQ Q Q     (Eq. S3a) 

( ) 0m

M G gW q V W       (Eq. S3b) 

( ) 0m

G g G ox BGW qV q V W        (Eq. S3c) 

 

As aforementioned, the graphene charge   below the metal is related to 
( )m

g F DE E     following 

the expression 
( ) ( ) ( )( ) [ ( ) ( )]m m m

G g g gQ q p n    . The surface charge densities MQ  and BGQ are related 

to the voltage drop across the dipole and dielectric layers as M dQ C V   and BG ox oxQ C V , 

respectively; where 0/ /d d d dC t t    and 2 /oxC b  describe the dipole layer and back-gate 

capacitance per unit area. We note that, by performing this infinite parallel-plate capacitor 

approximation, clusters are assumed to be elongated objects. Combining Eqs. 3, we obtain the 



following transcendental equation for 
( )m

g  in graphene below the metal, which is numerically 

solved. 

( ) ( )( )
( ) ( ) ( ) 0m md ox d ox

g G g G M G G BG

C C C C
Q W W W qV W

q q q
 


        (Eq. S4) 

 

Importantly, we note that this equation is valid for metal islands of any shape, as long as their 

density of states  M

FDOS E  is large (i.e. close to the one of the bulk metal). A more detailed 

analysis, including finite-size corrections to the bulk density of states  M

FDOS E  can be found in 

[S2]. 

 

Figure S4.  Band diagram of a metal-graphene interface in a gated graphene device.  A voltage 

drop ΔV is produced over the dipole layer (Fig. 2b) and 
( )m

g  represents the shift of the graphene 

Fermi level EF with respect to the Dirac point ED due to both the metal presence and the  back-gate. 

 

Graphene region outside the metal 



In a similar way, an equation for the shift of the graphene chemical potential outside of the metal 

region 
(0)

g  and far-away from the lateral junction can be obtained. Outside the metal zone Eq. S3a 

reduces to 0G BGQ Q  , Eq S3b is not present and in Eq. S3c, 
( )m

g is replaced by 
(0)

g . In other 

words, equilibrium is established between the back gate and graphene only.  

 

Fig. S5 shows the calculated dependence of 
g  on the gate voltage Vg, in both graphene regions 

below ( )m

g  and outside (0)

g  the metal, far-away from the lateral p-n junction. This is done 

considering titanium (Ti) as the metal, with the following overall parameters [S7,S12]: WG = 4.5 

eV, WM = 4.33 eV, WBG = 4.5 eV, εd = ε0, ε2 = 3.9ε0,  T = 300 K and b = 300 nm. By comparing both 

regions, we can see that Ti n dopes graphene and a symmetric n-p junction is created when a 

backgate voltage approximately equal to -10V is applied (condition 
( ) (0)( ) ( )m

g g g gV V   ). Also, the 

estimated step of the lateral p-n junction
( ) (0)m

g gE q          (see Fig.2, main text) is ~ - 

0.2 eV. Such value is a reasonable match to the -0.28 eV calculated from first principles [S12] and 

close to the values extracted from experiments, ranging from -0.12 eV [S13] to -0.15 eV [S14]. 

Furthermore, it is worth noting that values of E  from the 1D model accurately agree with those 

E q   obtained from the 2D model as aforementioned in section S1.  

Finally, similar to the electrostatic model, this analysis is applicable to weakly bonded metals, those 

which do not change the bandstructure of graphene [S2,S7]. We note that, in practice, the strength 

of metal-graphene coupling (i.e the equilibrium distance metal-graphene) might be complex to 

determine, not only depending on the type of metal [S7], but also in the deposition conditions, metal 

granularity or annealing cycles [S14,S15]. Additional information about this can be found in the 

Note 5 of this Supporting Information. 



 

Figure S5.  Fermi level of graphene with respect to the Dirac point in regions with and 

without metal for different gate voltages Vg.  Ti is the metal selected for this figure, having a WM 

= 4.33 eV. A symmetric and bipolar lateral n-p junction is observed in this case for a gate voltage Vg 

= -10 V.  

 

 

Supporting Information Note 4. Criterion for treating graphene as a perfect metal at metal-

graphene interfaces 

In this section, we justify the fact that graphene cannot be considered as a perfect metal to calculate 

the width of p-n junctions w at metal-graphene interfaces.  

We start from the net current density ej  in a conductor, given by the expression [S16]: 

ej E      (Eq. S5) 

where     represents the diffusion current. In equilibrium E    and 0ej  , / q   , and we 

have: 

.q const    (Eq. S5) 



At a constant temperature, and if the density of carriers n  is close to equilibrium (i.e. 
eqn n n   << 

1 ), n
n


 


  


 and we can write: 

ej E n
n


  


  


 (Eq. S6) 

Then, in equilibrium, and using Ficks law qD
n








 

0
qD
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     (Eq. S7) 

where D is the diffusion coefficient.   

From / q    and the fact that ( )g

F

n
DOS E







,  2 ( )g

FD q DOS E , which is the Einstein relation 

[S16]. Hence, using 
eqn n n   , at the surface of the graphene: 

1
.

( )g

F

n const
qDOS E

    (Eq. S8a )      or      2
.

( )

g

g

F

const
q DOS E


    (Eq. S8b) 

where g qn   is the surface charge density in graphene.  

On the other hand, g is given by: 

1 2

0 0

g
z z

 
  

 

 
  

 
(Eq. S9), 

assuming that graphene is placed at z=0 and the dielectric constant above and below graphene are 

1 1 0r   and 2 2 0r   , respectively. For simplicity we take here 1 2 0r       .  

Using Eqs. S8 and S9, we have: 

2

0 0

( )
.

g

Fq DOS E
const

z z

 


 

 
  

 
 (Eq. S10). 

In Eq. S10, one can define the carrier density dependent quantity  



2 ( )
g g

F

l
q DOS E


   (Eq. S11) 

which has dimensions of length. gl  represents the scale at which the perfect metal approximation 

can be used for graphene. In other words, when 0gl   or, more generally, when gl  is much smaller 

than any other geometrical lengths in the device, graphene can be considered as perfect metal, and 

the junction width w will be entirely determined by geometrical factors. Otherwise, quantum 

capacitance effects need to be taken into account in the system due to the lack of screening at p-n 

interfaces [S4]. Here, w will be larger, proportional to  gl  and dependent on additional parameters 

including device parameters such as the back gate dielectric and operational parameters such as 

temperature or carrier density. 

In particular, given the density of states of graphene [S17] 2 2

2 2
( )

Fg

F

F F

E n
DOS E

v v



 
  , one can 

estimate gl  at typical carrier densities of graphene n=10
12

 cm
-2

 to be ~ 0.5 nm when graphene 

immersed in vacuum 0  . As such, first, we cannot use the perfect metal approximation in metal-

graphene interfaces, systems where the separation between graphene and metal (~0.3 nm [S7]) is 

comparable to gl . Furthermore, we note that gl  not only decreases at lower carrier densities n 

proportionally to 
1/2~gl n

   but also linearly with the permittivity of the surrounding medium  . 

This means that the screening of the in-plane electric field at the junction is less effective when 

increasing the permittivity of the surrounding media  [S4], and is one of the reasons why w  

increases when graphene is supported on ‘high-k dielectrics’ with respect to dielectrics with much 

lower permittivity (Fig. 3c, main text). We emphasize that the calculated w (Figs. 3a and 3c, main 

text) follows pretty accurately the same trends than gl : linear with respect to both 
1/2n

 (Fig. 3a) and  

 (Fig. 3c). 



Supporting Information Note 5. Applicability of our model 

Our model is applicable when the interaction between metals and graphene is weak, i.e. the 

graphene bands, including their conical points at K, are preserved and can be clearly identified. 

Specifically, this situation occurs when the separation distance between graphene and metal is  td > 

0.3 nm [S7].  Graphene on metals such as Al, Cu, Ag, Au, Pt, show separation distances td  > 0.3 

nm [S7]. Not only that, such situations (td  > 0.3 nm) also occur for certain configurations of 

graphene on alternative metals, despite such metals might be commonly regarded to interact 

strongly with graphene. For instance, this is the case of the so-called “BC” bonding configuration of 

graphene on Ni [S18].  

In addition, we note that the determination of the actual equilibrium distance between metal and 

graphene td (i.e. the strength of the metal-graphene coupling) might be more complex in practice. 

This will not only depend on the type of metal or equilibrium configuration, but also on device-

specific conditions such as vacuum levels when depositing the metal on graphene, metal 

granularity, performed annealing cycles and/or the formation of a native oxide layer at the interface 

with graphene in some metals such as Al or Ti [S14, S19, S20]. More generally, we note that even 

in the case of graphene interacting strongly with some metals, the monolayer could be decoupled 

from the metallic substrate using different techniques (oxidation, intercalation of different atomic 

species or others [S21, S22]). All of these comprise examples where graphene’s bandstructure will 

be preserved and thus our model will be applicable.  

 

 

 

 



Supporting Information Note 6. Dependence of the in-plane potential on td and εd 

It is possible to analytically estimate the dependence of the in-plane potential   on the separation 

distance between metal and graphene td  and the permittivity of this gap εd. Such problem is similar to the 

calculation of depletion lengths in locally gated field effect transistors made from thin semiconductor films 

(silicon on insulator, SOI) in order to avoid short-channel effects [S23,S24].  

Here, one can show that a natural length  controls the spread of the potential distribution of ( )x  in the 

graphene plane along the x direction (for convenience we use here Cartesian coordinates). Indeed, assuming 

a simple parabolic form of the potential distribution 
2

0 1 2( , ) ( ) ( ) ( )x z c x c x z c x z    one can solve the 

Poisson’s equation (Eq.1 main text) with the three boundary conditions of the problem [S23,S24]: 

1- 0( ,0) ( )x c x   

2- The electric field at the top of the graphene surface (z = 0, Fig S1b) is determined by the 

difference between the potentials at metal M  and graphene ( ,0)x  surfaces and td as: 

1

0

( ,0)( , )
( )d M

z g d

xd x z
c x

dz t

  




   

3- The electric field at the bottom of the graphene surface (z = -tG) is close to zero, giving:  

1 2( ) 2 ( ) 0Gc x t c x . We note that this approximation is valid when considering a weak field 

at the supporting dielectric substrate (i.e. no significant backgate potential). 

Considering these boundary conditions and a constant graphene permittivity g ,  Eq.1 can be written as: 

2
2

2

( ) ( ,0)( ,0)
( , )

free d M

g g G d

xd x
x z

dx t t

    


 


     (Eq. 12) 



This equation can be solved [S23,S24] by undertaking the transformation
g

G d

d

t t





 . Indeed, this 

parameter has units of length and effectively describes the potential distribution ( )x  of the interface. 

Without the need to solve the equation, we can clearly see how   increases when increasing dt  and is 

proportional to 
1/2

d


. These two trends are observed in our simulations in Figs. 3e and 3f, main text, 

respectively. 

 

Supporting Information Note 7. Preventing current injection from graphene to metal islands 

For a proper functioning of electron-optics devices such as Klein tunneling transistors, current 

injection from graphene to metal islands should be avoided. This is needed to achieve a large 

current modulation in these devices. 

We undertake a simple resistor circuit analysis (Fig. S6) to quantitatively evaluate the possibility of 

injecting current from graphene to the floating metal island. As we will see, this calculation 

incorporates additional device parameters such as metal island size or graphene quality. This 

information is useful to understand further and design metal-graphene interfaces for electron-optics 

applications. 

Here, we assume for simplicity that i) the sheet resistance of graphene underneath the metal 
M

gR  is 

similar to the sheet resistance of the graphene without metal on top 
0

gR : 
0M S

g g gR R R   (i.e. we 

solve the symmetric junction case). Furthermore, in this case, ii) the metal on top of graphene is a 

rectangle, width W = 1 µm and length ML , dimensions which are larger than the current 

injection/ejection region iL  from graphene to metal and viceversa ( S

i C gL R where C  is the 

contact resistivity at the metal-graphene interface. [S25].  



Based on this simple circuit, the current flowing through graphene underneath the metal 
gI  with 

respect to the incident current inI  is   / 1 1 / 2g in g cI I R R   and takes values 84%  and 96.2% for  

ML = 0.5 µm and ML = 100 nm, respectively. The former calculations have been performed 

assuming a graphene sheet with mobility µ = 20000 cm
2
V

-1
s

-1
 at a carrier density n = 2×10

12
 cm

-2
 (

1( )S

gR ne  ∼ 150Ω), and typical contact resistivities at metal-graphene interfaces 
5~1 10c


Ωcm
2
 [S11, S26]. For both calculated cases iL  is limited by ML ; and the graphene and contact 

resistances are given by the expressions 
S M

g g

L
R R

W
  and 

 coth / / /S S

c c g M i c gR R L L W R W   . 

We note that these values are consistent with values calculated using a more advanced resistor 

networks model [S27], where > 75% of current flowing through graphene with a lower mobility µ = 

5000 cm
2
V

-1
s

-1
 for a length ML = 1 µm. In general, the larger c and the shorter ML , the higher 

percentage of current flows through graphene. As such, this ratio can be controlled and custom 

tailored by increasing the distance between metal and graphene dt  (using the aforementioned 

techniques described in Supporting Note 5) since c increases exponentially when increasing dt , see 

Ref. [S26]. 

Finally, we note that the estimated current ratio values are consistent with experiments [S13] 

demonstrating the creation of electron optics devices by depositing metallic dots with sizes ~100 

nm on graphene transistors with mobilities µ ~ 20000 cm
2
V

-1
s

-1
. 



 

Figure S6.  (a) Schematic of the device with the floating metal cluster of length Lm on the graphene 

channel. (b) Equivalent circuit model, approximating the metal resistance Rm to zero.  
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