Heterostructures Engineering of Co doped MoS₂ coupling with Mo₂CT_x MXene for Enhanced Hydrogen Evolution in Alkaline Media

Junmei Liang, Chaoying Ding, Jiapeng Liu, Tao Chen, WenChao Peng, Yang Li, Fengbao Zhang

and Xiaobin Fan*

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering,

Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin

300072, China

E-mail: xiaobinfan@tju.edu.cn

Figure S1 a) HRTEM image of pristine MoS_2 ; b) elemental mapping showing the uniform distribution of F and O elements in Co-MoS₂/Mo₂CT_x nanohybrids.

The following simplified reactions occurs when the exfoliation of $M_{n+1}AX_n$ phase by HF solution, the as-obtained pristine MXene are chemically terminated with oxygen-containing and/or fluoride functional groups. Thus, the negatively charged terminal groups (–F and –O) can be detected by elemental mapping.

$$M_{n+1}AX_n + 3HF = AF_3 + M_{n+1}X_n + 1.5H_2$$
(1)

$$M_{n+1}X_n + 2H_2O = M_{n+1}X_n(OH)_2 + H_2$$
⁽²⁾

$$M_{n+1}X_n + 2HF = M_{n+1}X_nF_2 + H_2$$
(3)

Figure S2 SEM images of a) pure MoS_2 and b) Co- MoS_2/Mo_2CT_x nanohybrids.

The SEM images of pure MoS_2 and $Co-MoS_2/Mo_2CT_x$ nanohybrids have been shown in Figure S2. The pure MoS_2 in Figure S2a shows the large bulk morphology, while the $Co-MoS_2/Mo_2CT_x$ nanohybrid in Figure S2b exhibits dispersed MoS_2 particles attached on the surface of Mo_2CT_x MXene. This result further confirms the Mo_2CT_x MXene can prevent MoS_2 particles from agglomeration during preparation progress. The corresponding modification is also made in original manuscript.

Figure S3 a) XRD patterns of Mo_2CT_x MXene by HF etching without annealing in Ar atmosphere and pristine Mo_2Ga_2C ; b) XRD pattern of Co-Mo_2CT_x sample.

Figure S4 XPS spectrum of S 2p in Co-MoS $_2$ /Mo $_2$ CT $_x$ hybrid.

Figure S5 Cyclic voltammograms for different materials at the different rates range from 20 to 200 mV s⁻¹.

To evaluate the electrochemically active surface area (ECSA), a series of cyclic voltammetry (CV) measurements were performed at different scan rates varying from 20 to 200 mV s⁻¹ in the region from 0.05 to 0.25 V to determine the double-layer capacitance (C_{dl}). For comparison, the CV at different scan rates of Co-MoS₂/Mo₂Ga₂C catalyst was performed. The results are shown in **Figure S5**.

Figure S6 XRD patterns of Co-MoS $_2$ /Mo $_2$ CT $_x$ catalyst before and after stability test.

Figure S7 TEM image of Co-MoS $_2$ /Mo $_2$ CT $_x$ after stability test.

Figure S8 a) Polarization curves of Co-MoS₂/Mo₂CT_x in 1M KOH, 0.5 M H_2SO_4 and 1M PBS electrolytes and b) the corresponding Tafel plots.

The HER performance of Co-MoS₂/Mo₂CT_x electrode in acid and neutral media were evaluated and the results are compared in Figure S8. The Co-MoS₂/Mo₂CT_x electrocatalyst exhibits the small overpotentials of 218 and 286 mV at current density of 10 mA cm⁻² in acid and neutral media, respectively. Accordingly, the Tafel slopes are 94 and 128 mV dec⁻¹ in acid and basic media. The results suggest the great potential of all pH hydrogen evolution for Co-MoS₂/Mo₂CT_x hybrids. In addition, the Co-MoS₂/Mo₂CT_x electrocatalyst exhibits much better alkaline HER activity than acidic HER activity, suggesting the enhanced HER activity of Co-MoS₂/Mo₂CT_x catalyst in alkaline media is mainly attributed to the initially accelerated water dissociation, rather than the hydrogen adsorption properties.

Figure S9 a) Polarization curves of Co-MoS₂/Mo₂Ga₂C catalyst at a scan rate of 5 mV s⁻¹ in 1 M KOH; b) Tafel plots of Co-MoS₂/Mo₂Ga₂C catalyst; c) EIS spectrum of Co-MoS₂/Mo₂Ga₂C catalyst at $\eta = 200$ mV; d) capacitive current at 0.15 V as a function of scan rates (20 to 200 mV s⁻¹) for Co-MoS₂/Mo₂Ga₂C catalyst.

In view of the effect of etching by HF solution, the HER performance of Co-MoS₂/Mo₂Ga₂C catalyst was evaluated, and the results are shown in **Figure S9**. It suggests Co-MoS₂/Mo₂Ga₂C exhibits lower HER activity than Co-MoS₂/Mo₂CT_x catalyst.

Figure S10 a) Polarization curves, b) Tafel plots, c) EIS spectra and d) capacitive current at 0.15 V as a function of scan rates (20 to 200 mV s⁻¹) of Co-MoS₂/Mo₂CT_x catalyst at different ATTM/Mo₂CT_x mass ratios.

The HER performance of Co-MoS₂/Mo₂CT_x strongly depends on ATTM/Mo₂CT_x mass ratios. The ATTM/Mo₂CT_x MXene mass ratio of 3:1 described in manuscript displays higher HER activity than ATTM/Mo₂CT_x MXene mass ratio of 1:1 and 1:3.

Catalysts	Overpotential at j =	Tafel slope	slope References dec ⁻¹)	Cites
	10 mA cm ⁻² (mV)	(mV dec ⁻¹)		
Co-MoS ₂ /Mo ₂ CT _x	112	82	This work	
Ni/Mo ₂ C-PC	179	101	Chem. Sci., 2017, 8, 968	1
MoS ₂ /Ti ₃ C ₂ -MXene@C	135	45	Adv. Mater., 2017, 29, 1607017	2
Mo ₂ C-C	149	66	Nano Energy, 2017, 32 , 511–519	3
Cu@NiFe LDH	116	58.9	Energy Environ. Sci., 2017, 10, 1820	4
Co-MoS ₂	163	158	Energy Environ. Sci.,2016, 9, 2789	5
CoMoO-S/NF	134	87	J. Catal., 2018, 361 , 204–213	6
MoSSe	140	40	Adv. Mater., 2018, 30, 1705509	7
NC@CuCo ₂ N _x /CF	105	76	Adv. Funct. Mater., 2017, 27, 1704169	8
Ti_2CT_x nanosheets	170	100	Nano Energy, 2018, 47 , 512–518	9
NiCu@C-1	74	94.5	Adv. Energy Mater., 2018, 8 , 1701759	10
CuCoO-NWs	140	108	Adv. Funct. Mater., 2016, 26, 8555-8561	11
CoP@NC-NG	155	68.6	Small, 2017,14,702895	12
CoSe ₂	200	85	Adv. Mater., 2016, 28, 7527	13
R-MoS ₂ @NF	71	100	Adv. Mater., 2018, 30 , 1707105	14
SWCNTs/MoSe ₂	170	67	Adv. Energy Mater., 2018, 8, 1703212	15

Table S1 A comparison of Co-MoS $_2$ /Mo $_2$ CT $_x$ electrocatalyst with recently reported non-noble metal catalystsin HER performance (1M KOH).

Supplementary References

- 1. Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng and S. H. Yu, *Chem Sci*, 2017, **8**, 968-973.
- 2. X. Wu, Z. Wang, M. Yu, L. Xiu and J. Qiu, *Adv. Mater.*, 2017, **29**, 1607017.
- 3. Z. Wu, J. Wang, R. Liu, K. Xia, C. Xuan, J. Guo, W. Lei and D. Wang, *Nano Energy*, 2017, **32**, 511-519.
- L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen and Z. Ren, *Energy Environ. Sci.*, 2017, 10, 1820-1827.
- 5. J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, *Energy Environ. Sci.*, 2016, **9**, 2789-2793.
- 6. Z.-Z. Liu, X. Shang, B. Dong and Chai, Yong-Ming, J. Catal., 2018, 361 204-213.
- C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du, Y. Gong, Y. Huang, Z. Lai, X. Zhang, L. Zheng, X. Qi, M. H. Goh, J. Wang, S. Han, X. J. Wu, L. Gu, C. Kloc and H. Zhang, *Adv. Mater.*, 2018, **30**, 1705509.
- 8. J. Zheng, X. Chen, X. Zhong, S. Li, T. Liu, G. Zhuang, X. Li, S. Deng, D. Mei and J.-G. Wang, *Adv. Funct. Mater.*, 2018, **27**, 1704169.
- 9. S. Li, P. Tuo, J. Xie, X. Zhang, J. Xu, J. Bao, B. Pan and Y. Xie, *Nano Energy*, 2018, 47, 512-518.
- 10. Y. Shen, Y. Zhou, D. Wang, X. Wu, J. Li and J. Xi, Adv. Energy Mater., 2018, 8, 1701759.
- 11. M. Kuang, P. Han, Q. Wang, J. Li and G. Zheng, Adv. Funct. Mater, 2016, 26, 8555-8561.
- 12. J. Ma, M. Wang, G. Lei, G. Zhang, F. Zhang, W. Peng, X. Fan and Y. Li, *Small*, 2018, 14, 1702895.
- 13. P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu and Y. Xie, *Adv. Mater.*, 2016, **28**, 7527-7532.
- 14. M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin and J. S. Lee, Adv. Mater., 2018, 30, 1707105.
- 15. L. Najafi, S. Bellani, R. Oropesa-Nuñez, A. Ansaldo, M. Prato, A. E. Del Rio Castillo and F. Bonaccorso, *Adv. Energy Mater.*, 2018, **8**, 1703212.