Electronic Supporting Information

Ultrathin Rh nanosheets as highly efficient bifunctional

electrocatalyst for the isopropanol-assisted overall water splitting

Yue Zhao,^{‡a} Shihui Xing,^{‡a} Xinying Meng,^a Jinghui Zeng,^a Shibin Yin,^b

Xifei Li,^c and Yu Chen^{a,*}

^a Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China

^b Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China

^c Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an 710048, P. R. China

*Corresponding author

E-mail: ndchenyu@gmail.com

Experimental section

Reagents and chemicals

Rhodium (III) chloride hydrate (RhCl₃· $3H_2O$), potassium hydroxide (KOH), potassium ferricyanide (K₃Fe(CN)₆), and formaldehyde (HCHO) were purchased from Adamas Reagent Co., Ltd.. **The** commercial Pt nanocrystals (Pt-NCs) was purchased from Johnson Matthey Corporation.

Preparation of Rh-NSs

In a typical synthesis, the 3 mL of mixture solution containing 0.15 M RhCl₃ and 0.15 M K₃Fe(CN)₆ was heated at 80 °C for 8 h, which induced the generation of jelly-like RhCl₃-K₃Fe(CN)₆ cyanogel. After cooling, 2.0 mL of HCHO was added in the RhCl₃-K₂Fe(CN)₆ cyanogel. Then, the mixture was heated at 200 °C for 6 h, which induced the generation of Rh-NNs. After reaction, Rh-NSs were washed with 0.01 M HCl solution and water, and the dried at 60 °C for 8 h.

Electrochemical measurements

Various electrochemical measurements, such as CV. LSV. EIS. and chronopotentiometry, tests, were performed on CHI-660 electrochemical analyser at 30 °C. In a three-electrode cell, carbon rod, the saturated calomel electrode, catalystmodified glassy carbon electrode were used as the auxiliary electrode, reference electrode, working electrode, respectively. The catalyst ink-transfer method was used to prepare the working electrode. The catalyst ink was got ready by dispersing 2 mg of the catalyst in 1.0 mL of water. The 4 µL of the catalyst ink was loaded onto the electrode surface and dried at room temperature. Then, Then, 4 µL of Nafion solution (0.05 wt%) was coated on the electrode surface and dried at room temperature. The metal loading density on working electrode was 0.11mg cm⁻².

Physical characterization

Transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energydispersive X-ray (EDX) maps, and selected area electron diffraction (SAED) were carried out with a TECNAI G2 F20 instrument. Scanning electron microscopy (SEM) and EDX analysis were conducted with an SU-8020 instrument. N2 adsorption/desorption isotherm test was performed on a Micro-meritics ASAP 2020 HD88 physical adsorption instrument. X-ray diffraction (XRD) were performed on a DX-2700 power X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) was conducted on an AXIS ULTRA spectrometer, and the binding energy was calibrated with C 1s peak at 284.6 eV. Atomic force microscopy (AFM) was carried out with a Dimension Icon instrument.

Figures and captions

Fig. S1 TEM image of Rh-NSs after chronoamperometry test.

Fig. S2 TEM image of Rh-NSs after chronoamperometry test.

Fig. S3 (A) CV curves of Rh-NSs and Rh black in Ar-saturated 1.0 M KOH solution with 1.0 isopropanol at 50 mV s⁻¹. (B) LSV polarization curves of Rh-NSs and Rh black in Ar-saturated 1.0 M KOH solution at 5 mV s⁻¹.

Fig. S4 (A) LSV polarization curves of Rh-NSs and spherical Rh nanoparticles in Arsaturated 1.0 M KOH solution. (B) TEM image of spherical Rh nanoparticles. Herein, spherical Rh nanoparticles was synthesized by replacing RhCl₃-K₃Fe(CN)₆ cyanogel with RhCl₃ solution as the reaction precursor under same experimental conditions.

Catalysts	Electrolyte	η_{10} value	Ref. (year)
Rh-NSs	1 M KOH	43 mV	This work
Pd nanonetwork	1 M KOH	110 mV	20171
Mo ₂ C@NC@Pt nanospheres	1 M KOH	47 mV	2019 ²
Ir _{0.80} Ru _{0.20} O _y	1 M NaOH	ca. 45 mV	2017 ³
$PtO_aPdO_bNPs@Ti_3C_2T_x$	0.1 M KOH	57 mV	20184
Pd@Ru core@shell nanorods	1 M KOH	30 mV	20185
Modified Pt(111) by Ni(OH) ₂	0.1 M NaOH	88 mV	20196
NiCo ₂ S ₄ /Pd heterostructure	1 M KOH	83 mV	20187
Pt/NiO@Ni/NF nanocomposite	1 M KOH	34 mV	20188
Pt-Co(OH) ₂ nanosheet	1 M KOH	32 mV	20179
Rh nanocrystal at carbon nanotubes	1 M KOH	48 mV	201810
Ultrafine Pt nanoparticles at CoS ₂ nanosheet	1 M KOH	24 mV	201811
Au doping in Co-Ni hydroxide	1 M KOH	35 mV	201812
Ru nanoparticles on nitrogen-doped GnP	1 M KOH	22 mV	201813
Pt-Ni anisotropic superstructures	1 M KOH	27.7 mV	201814
Ultrathin Pt/Ni alloy nanowires	0.1 M KOH	38 mV	201815
Palladium phosphide	1 M KOH	35.4 mV	201816
N,P dual-doped carbon-encapsulated ruthenium diphosphide nanoparticle	1 M KOH	52 mV	2017 ¹⁷
Ru nanodendrites	1 M KOH	43.3 mV	201818
Ru-doped Ni-Co bimetal phosphides	1 M KOH	52 mV	201719
Fe–Pt mesoporous films	1 M KOH	74 mV	201820
Pt nanostructure at N-Doped carbon	0.5 M KOH	51 mV	201821
Pt nanoparticles at 2D-Ni(OH) ₂ nanosheets	0.1 M KOH	ca. 118 mV	201822
Pristine Ru-based electrode	0.1 M KOH	150 mV	2019 ²³
Ni(OH) ₂ -PtO ₂ hybrid nanosheet array	1 M KOH	100 mV	201824
3D nanoporous Ag@Pd core@shell hybrids	1 M KOH	23.8 mV	201825
Open hollow Co–Pt bimetallic nanoclusters	1 M KOH	50 mV	201826
Pt nanoparticles at NiFe hydroxide	1 M KOH	101 mV	201727
Pd nanoparticles on TiO ₂ nanotube	1 M HClO ₄	38 mV	201828
Pt-Mn nanocubes on Ni(OH) ₂ nanosheets	0.1 M NaOH	ca. 100 mV	201829
Rh tetrahedron	1 M KOH	43 mV	2017 ³⁰

Table S1. HER activity of various precious metal based eleectrocatalysts in KOH solution.

Rh concave tetrahedra	1 M KOH	ca. 75 mV	2017 ³⁰
Single-atom Pt1 onto Fe-N4 center	1 M KOH	ca.110 mV	201831
PtCo alloy at Co nanowire array	1 M KOH	28 mV	201832
Pt-decorated Ni ₃ N nanosheets	1 M KOH	ca.50 mV	2017 ³³
Octahedral Pt-Co alloy nanocrystals	0.1 M KOH	ca.50 mV	2017 ³⁴

References

- 1. H. Begum, M. S. Ahmed and S. Jeon, ACS Appl. Mater. Interfaces, 2017, 9, 39303-39311.
- J. Chi, J. Xie, W. Zhang, B. Dong, J. Qin, X. Zhang, J. Lin, Y. Chai and C. Liu, ACS Appl. Mater. Interfaces, 2019, 11, 4047-4056.
- 3. Y. B. Cho, A. Yu, C. Lee, M. H. Kim and Y. Lee, *ACS Appl. Mater. Interfaces*, 2018, **10**, 541-549.
- 4. B. Cui, B. Hu, J. Liu, M. Wang, Y. Song, K. Tian, Z. Zhang and L. He, ACS Appl. Mater. Interfaces, 2018, 10, 23858-23873.
- Y. Luo, X. Luo, G. Wu, Z. Li, G. Wang, B. Jiang, Y. Hu, T. Chao, H. Ju, J. Zhu, Z. Zhuang, Y. Wu, X. Hong and Y. Li, *ACS Appl. Mater. Interfaces*, 2018, **10**, 34147-34152.
- F. J. Sarabia, P. Sebastian-Pascual, M. T. M. Koper, V. Climent and J. M. Feliu, ACS Appl. Mater. Interfaces, 2019, 11, 613-623.
- 7. G. Sheng, J. Chen, Y. Li, H. Ye, Z. Hu, X. Fu, R. Sun, W. Huang and C. Wong, ACS Appl. Mater. Interfaces, 2018, 10, 22248-22256.
- Z. Chen, G. Cao, L Gan, H. Dai, N. Xu, M. Zang, H. Dai, H. Wu and P. Wang, ACS Catal., 2018, 8, 8866-8872.
- 9. Z. Xing, C. Han, D. Wang, Q. Li and X. Yang, ACS Catal., 2017, 7, 7131-7135.
- W. Zhang, X. Zhang, L. Chen, J. Dai, Y. Ding, L. Ji, J. Zhao, M. Yan, F. Yang, C. Chang and S. J. Guo, *ACS Catal.*, 2018, 8, 8092-8099.
- 11. X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong and W. Hu, *Adv. Energy Mater.*, 2018, **8**, 1800935.
- 12. U. K. Sultana, J. D. Riches and A. P. O'Mullane, Adv. Funct. Mater., 2018, 28, 1870306.
- 13. F. Li, G. Han, H. J. Noh, I. Ahmad, I. Y. Jeon and J. B. Baek, *Adv. Mater.*, 2018, **30**, 1803676.
- 14. Z. Zhang, G. Liu, X. Cui, B. Chen, Y. Zhu, Y. Gong, F. Saleem, S. B. Xi, Y. Du, A. Borgna, Z. Lai, Q. Zhang, B. Li, Y. Zong, Y. Han, L. Gu and H. Zhang, *Adv. Mater.*, 2018, **30**, 1801741.
- 15. Z. Liu, J. Qi, M. Liu, S. Zhang, Q. Fan, H. Liu, K. Liu, H. Zheng, Y. Yin and C. Gao, *Angew. Chem. Int. Edit.*, 2018, **57**, 11678-11682.
- 16. F. Luo, Q. Zhang, X. Yu, S. Xiao, Y. Ling, H. Hu, L. Guo, Z. Yang, L. Huang, W. Cai and H. Cheng, *Angew. Chem. Int. Edit.*, 2018, 57, 14862-14867.
- 17. Z. Pu, I. S. Amiinu, Z. K. Kou, W. Q. Li and S. Mu, *Angew. Chem. Int. Edit.*, 2017, 56, 11559-11564.
- K. Gao, Y. Wang, Z. Wang, Z. Zhu, J. Wang, Z. Luo, C. Zhang, X. Huang, H. Zhang and W. Huang, *Chem. Commun.*, 2018, 54, 4613-4616.

- S. Liu, Q. Liu, Y. Lv, B. Chen, Q. Zhou, L. Wang, Q. Zheng, C. Che and C. Chen, *Chem. Commun.*, 2017, 53, 13153-13156.
- 20. E. Isarain-Chavez, M. D. Baro, C. Alcantara, S. Pane, J. Sort and E. Pellicer, *ChemSusChem*, 2018, 11, 367-375.
- 21. M. K. Kundu, T. Bhowmik, R. Mishra and S. Barman, *ChemSusChem*, 2018, **11**, 2388-2401.
- 22. B. Ruqia and S. I. Choi, ChemSusChem, 2018, 11, 2643-2653.
- 23. F. M. Mota, C. H. Choi, R. Boppella, J. E. Lee and D. H. Kim, *J. Mater. Chem. A*, 2019, 7, 639-646.
- 24. L. Xie, X. Ren, Q. Liu, G. Cui, R. Ge, A. M. Asiri, X. Sun, Q. Zhang and L. Chen, *J. Mater. Chem. A*, 2018, **6**, 1967-1970.
- 25. C. Yang, H. Lei, W. Zhou, J. Zeng, Q. Zhang, Y. Hua and C. Xu, J. Mater. Chem. A, 2018, 6, 14281-14290.
- 26. H. Zhang, Y. Liu, H. Wu, W. Zhou, Z. Kou, S. J. Pennycook, J. Xie, C. Guan and J. Wang, J. Mater. Chem. A, 2018, 6, 20214-20223.
- 27. S. Anantharaj, K. Karthick, M. Venkatesh, T. Simha, A. S. Salunke, L. Ma, H. Liang and S. Kundu, *Nano Energy*, 2017, **39**, 30-43.
- U. Lacnjevac, R. Vasilic, T. Tokarski, G. Cios, P. Zabinski, N. Elezovic and N. Krstajic, Nano Energy, 2018, 47, 527-538.
- 29. Y. Wang, H. Y. Zhuo, X. Zhang, X. P. Dai, K. M. Yu, C. L. Luan, L. Yu, Y. Xiao, J. Li, M. L. Wang and F. Gao, *Nano Energy*, 2018, 48, 590-599.
- 30. N. Zhang, Q. Shao, Y. C. Pi, J. Guo and X. Q. Huang, Chem. Mat., 2017, 29, 5009-5015.
- 31. X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng and R. Yu, Adv. Energy Mater., 2018, 8, 1701345.
- 32. Z. Wang, X. Ren, Y. Luo, L. Wang, G. Cui, F. Xie, H. Wang, Y. Xie and X. Sun, *Nanoscale*, 2018, **10**, 12302-12307.
- 33. Y. Wang, L. Chen, X. Yu, Y. Wang and G. Zheng, Adv. Energy Mater., 2017, 7, 1804361.
- 34. Q. Chen, Z. Cao, G. Du, Q. Kuang, J. Huang, Z. Xie and L. Zheng, *Nano Energy*, 2017, **39**, 582-589.