Supporting information for "Direct White Light Emission from Carbon Nanodots (C-dots) in solution processed Light Emitting Diodes"

Sofia Paulo-Mirasol, ^{1,2} Eugenia Martínez-Ferrero^{*2} and Emilio Palomares^{*1,3}

¹ Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Avda. Països Catalans, 16, E-43007, Tarragona, Spain.

² Eurecat, Centre Tecnològic de Catalunya, Printed Electronics & Embedded Devices Unit, Avda. Ernest Lluch 36, Mataró 08302, Spain.

³ ICREA, Passeig Lluis Companys, 28, E-08018, Barcelona, Spain.

*Corresponding author E-mail: epalomares@iciq.es

eugenia.martinez@eurecat.org

Characterization of C-Dots.

Figure S1. The TEM images of C-Dots at different magnifications.

Figure S2. FT-IR spectrum of the precursor citric acid (CA), passivating ligand 1-hexadecylamine (HDA) and the resulting C-Dots prepared with HDA.

Figure S3. Cyclic voltammetry of C-Dots solved in dichloromethane recorded in 0.1M tetrabutylammonium hexafluorophosphate at room temperature.

Figure S4. The normalized absorption and photoluminescence spectra of C-Dots in hexane. The intersection between the absorbance and photoluminescence spectra is at λ =480nm.

Figure S5. Experimental Fluorescence-decay curves of C-Dots measured in solution after excitation at 270 nm, 405 nm and 470 nm at room temperature. The colour solid line represents the exponential fitted decay.

Figure S6. AFM images of the layers formed by (up) C-Dots onto ITO/ZnO/PEIE (phase), and (down) comparison of the morphology of the ITO/ZnO/PEIE/C-Dot layer with the PVK onto ITO/ZnO/PEIE/C-Dots at the same magnification scale.