## **Supporting Information**

## Azulenocyanine immobilized on graphene; on the way to panchromatic absorption and efficient blocking layers in DSSCs

Michel Volland,\*<sup>a</sup> Annkathrin Lennert,<sup>a</sup> Alexandra Roth,<sup>a</sup> Mine Ince,<sup>d</sup> Tomas Torres\*<sup>b,c,e</sup> and Dirk M Guldi\*<sup>a</sup>

<sup>a)</sup> Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany E-mail: dirk.guldi@fau.de

<sup>b)</sup> Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

<sup>c)</sup> IMDEA-Nanociencia, Campus de Cantoblanco, 28049 Madrid, Spain.

 <sup>d)</sup> Department of Energy Systems Engineering, Faculty of Technology, Tarsus University, Mersin, 33400, Turkey
<sup>e)</sup> Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain

| S1  | Cyclic voltagramm of <b>1</b> in DCM                                | 2 |
|-----|---------------------------------------------------------------------|---|
| S2  | Spectroelectrochemical delta spectra of 1                           | 3 |
| S3  | Absorption spectra of the formation of 2                            | 4 |
| S4  | Statistical Raman analysis of 2                                     | 5 |
| S5  | Absorption spectra of <b>1</b> and <b>2</b> on $TiO_2$              | 6 |
| S6  | Spectroelectrochemical delta spectra of $1$ on $TiO_2$              | 7 |
| ST1 | Figures-of-merit for DSSC with <b>1</b> and <b>2</b> as sensitizers | 8 |
| S7  | Current-Voltage plots with <b>1</b> and <b>2</b> as sensitizers     | 9 |
|     |                                                                     |   |



Figure S1: Cyclic voltagramm of **1** in DCM containing 0.1 M  $Bu_4NPF_6$  as supporting electrolyte vs Fc/Fc<sup>+</sup>.



Figure S2: Differential absorption spectrum (visible and near infrared) obtained upon spectroelectrochemical oxidation of **1** in DMF at a voltage of vs Ag wire at room temperature.



Figure S3: Absorption spectra of **1** upon several enrichment cycles with graphite in DMF.



Figure S4: Left - TEM micrographs of 2 drop casted onto lacey carbon grids. Right - AFM topography picture of 2 drop casted onto SiO2 wafer and corresponding height profiles



Figure S5: Absorption features of compounds **1**, **2** and non-sensitized  $TiO_2$  dipped into MeCN.



Figure S6: Differential absorption spectrum (visible and near infrared) obtained upon spectroelectrochemical oxidation of  $\mathbf{1}$  on TiO<sub>2</sub> at a voltage of 0.85 V vs Ag wire at room temperature

Table S1: Figures-of-merit of DSSCs using **1** and **2** as sensitizers. Values + cut-off filter show figures-of-merit achieved when only light over 780 nm was absorbed.

| Sensitizer                | V <sub>oc</sub> [V] | J <sub>sc</sub> [mA/cm <sup>2</sup> ] | FF   | η [%]  |
|---------------------------|---------------------|---------------------------------------|------|--------|
| 1                         | 0.31                | 0.053                                 | 0.41 | 0.007  |
| <b>1</b> + cut-off filter | 0.27                | 0.015                                 | 0.50 | 0.002  |
| 2                         | 0.33                | 0.11                                  | 0.43 | 0.015  |
| <b>2</b> + cut-off filter | 0.22                | 0.027                                 | 0.31 | 0.0018 |



Figure S7: JV curves of DSSC using **1** and **2** as a sensitizer with and without a cut-off filter for 780 nm under 1sun illumination. Dark current (black) is shown for comparison.