Supporting Information

Stabilizing electrochemical Li–O₂ batteries with a metal-based cathode of PdNi on Ni nonwoven fabric

Huan-Feng Wang,^{a, b} Jun-Feng Li,^a Xue-Xi Sun^b and Ji-Jing Xu^{*a, c}

Dr. H.-F. Wang, Prof. J.-F. Li, Prof. J.-J. Xu

^a College of Chemistry, Jilin University, Changchun 130012, P.R. China

Dr. H.-F. Wang, Dr. X.-X. Sun

^b College of Chemical and Food, Zhengzhou Institute of Technology, Zhengzhou 450044, P.R. China

[*] Prof. J.-J. Xu

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun 130012, P. R. China

E-mail: jijingxu@jlu.edu.cn

Figure S1. The field emission scanning electron microscopic (FESEM) image of Pd/NiNF.

Figure S2. Powder X-ray diffraction patterns of Ni NF, Pd/NiNF and PdNi/NiNF cathodes.

Figure S3. Electrochemical performance of artificially Li₂O₂-loaded cathodes. Voltage profile on charge for Li–O₂ cells with Li₂O₂-loaded conventional SP carbon, PdNi/NiNF, Pd/NiNF and PdNi/NiNF powder cathodes at a current density of 200 mA g⁻¹. To avoid complications from possible electrolyte decomposition duringv the long discharge reaction, the four artificially Li₂O₂-loaded cathodes are electrochemically oxidized in Li–O₂ cells. It can be seen that a similar reduction is obtained for Li₂O₂ oxidation on PdNi/NiNF versus other cathodes, as observed in the charge profile shown in Figure 4a.

Figure S4. The influence of PdNi amount of PdNi/NiNF on the battery performance. (a) The first charge-discharge curves and (b) the corresponding overpotential of Li–O₂ cells with different PdNi/NiNFcathodes.

Figure S5. Electrochemical impedance spectra (EIS) of PdNi/NiNF and PdNi/NiNF powder cathodes.

Figure S6. FESEM image of the conventional SP carbon cathode.

Figure S7. (a) Low and (b) high magnification SEM images of the PdNi/NiNF powder cathode.

Figure S8. PXRD patterns of the discharged cathodes with the conventional SP carbon, Pd/NiNF, PdNi/NiNF, PdNi/NiNF powder after the first discharge.

Figure S9. The discharge curves of the Ar-filled cells based on the conventional SP carbon, Pd/NiNF, PdNi/NiNF powder and PdNi/NiNF alone electrodes at a current density of 0.10 mA cm⁻².

Figure S10. The rate capability of the Li–O₂ cells with the NiNF cathode.

Figure S11. PXRD patterns of the discharged PdNi/NiNF cathode before and after 50 cycles.