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1. Computational Model and Methodology
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Figure S1: (A) Lipid models for liposome/bicelle (beads 1–13) and planar membrane (beads
1–11). (B) Relation between membrane tension and lipid area for the (blue) lipids model of
the liposome/bicelle and (green) lipid model of the planar membrane.

1.1. Lipid Model

The lipid models for liposome/bicelle and planar membrane are given in Fig. S1(A). In the
liposome/bicelle model, the head group of lipid molecule is represented by three linearly
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connected hydrophilic beads, while each of the two tails is represented by 5 hydrophobic
beads. Neighboring beads i and j are connected by harmonic spring potentials,

Us1 = Ks1(rij − rs1)2, (1)

where the spring constant Ks1 = 50 kBT/r
2
0 and the equilibrium bond length rs1 = 0.7 r0 [1].

The stiffness of head and tail groups is controlled by an bending potential applied on the
adjacent three beads,

Uϑ1 = Kϑ1(ϑ− ϑ0)
2, (2)

where Kϑ1, ϑ and ϑ0 are the bending constant, the inclination angle and the equilibrium
angle, respectively. Different Kϑ1 and ϑ0 values are used to reflect the flexibility in different
locations of each lipid molecule [1]. For three consecutive lipid head/tail beads in the lipid,
Kϑ1 = 3.0 kBT and ϑ0 = 180◦. For beads 3, 4, and 9, Kϑ1 = 1.5 kBT and ϑ0 = 120◦. For the
two consecutive head beads connected to the first bead in the tail (beads 2, 3, 4 and beads 2,
3, 9), Kϑ1 = 2.25 kBT and ϑ0 = 120◦. Due the flexible head group in this DPPC lipid model,
the energy penalty to form the bilayer edge in the bicelle is relatively small, facilitating the
formation of a larger sized bicelle.

In the model for the planar membrane, adjacent beads making the lipid molecules are
connected by harmonic springs,

Us2 = Ks2(rij − rs2)2, (3)

with spring coefficient Ks2 = 64 kBT/r
2
0 and equilibrium distance rs2 = 0.5r0 [2, 3]. The

stiffness of the lipid tails is guaranteed by a bending potential

Uϑ2 = Kϑ2(1− cosϑ), (4)

where Kϑ2 = 15kBT [2, 3].
All pair-wise interactions parameters aij between lipid beads are listed in Table S1.

Note that a larger repulsion between lipids in the liposome/bicelle and membrane is used
to avoid their possible fusion. Under control of these parameters, the bilayer thickness in
the liposome/bicelle is around dHH1 = 5r0. The bilayer thickness in the planar membrane
is around dHH2 = 4r0. The mechanical properties of these two lipid models are calibrated
through stretching a patch of a planar bilayer in the simulation box of size (50 × 50 × 50)

r30. The relations between the tension of the planar bilayer and the lipid molecular area for
these two lipid models are given in Fig. S1(B). The stretch modulus can be extracted from
the slope of these curves. For the lipid bilayer in the liposome/bicelle, its stretch modulus
is KA1 = 13.30 kBT/r

2
0, while the one for the planar membrane is KA2 = 17.42 kBT/r

2
0.

The corresponding bending rigidity can be obtained from κ = KAd
2
HH/48 [4,5]. The bending

rigidity of the liposome/bicelle is therefore κlip ≈ 7kBT ; the bending rigidity of membrane is
κm ≈ 6kBT . Additionally, to estimate the line tension of the bilayer for liposome/bicelle, we
systematically change the size of the bicelle to find the transition size from bicelle to liposome
Rtrans ≈ 10r0. The line tension of the bicelle can be estimated via λ = 2κlip/Rtrans [6],
resulting in λ ≈ 1.4kBT/r0. Note that the transition size increases when the lipid heads get
decorated with PEG polymers.
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Table S1: Interaction parameters, aij in units of kBT , between lipid bead types i and j, in the
DPD simulation. S and E represent solvent (water) and PEG beads, respectively. H1 and T1

represent the lipid head and tail beads for liposome/bicelle. H2 and T2 represent the lipid
head and tail beads for the planar membrane.

S H2 T2 H1 T1 E
S 25.0 30.0 75.0 25.0 100.0 26.3
H2 30.0 30.0 35.0 100.0 100.0 26.3
T2 75.0 35.0 10.0 100.0 100.0 33.7
H1 25.0 100.0 100.0 25.0 100.0 26.3
T1 100.0 100.0 100.0 100.0 25.0 33.7
E 26.3 26.3 33.7 26.3 33.7 25.0

1.2. PEG model

A hydrophilic PEG polymer in our DPD simulations is modeled by a linear chain consisting
of coarse-grained monomers. The PEG monomers are linearly connected by the harmonic
bond potential Us3 = Ks3(rij − rs3)

2, with spring stiffness Ks3 = 2111.3 kBT/r
2
0 and

equilibrium distance rs3 = 0.4125 r0. The semi-flexibility of the PEG polymer is taken
into account by adding the bending potential Uϑ3 = Kϑ3(cosϑ − cosϑ03)

2, with bending
stiffness Kθ3 = 16.4946 kBT , and equilibrium bending angle θ03 = 130 ° between each three
consecutive monomers. Such a DPD PEG model could correctly reproduce the conformation
of a PEG polymer in water, including the radius of gyration and end-to-end distance, as
shown in our previous studies. [7, 8] To describe the PEGylated lipid, one end of the PEG
polymer is bonded to the lipid head bead through a harmonic bond potential. In addition,
the monomers at the free end of PEG polymers are defined to act as targeting moieties
(ligands). The polymerization degree of PEG polymers in our simulation is set as N = 20

(representing a molecular weight around 660 Da), falling within the typical range of 500-3000
Da in experiments. [9–11]

Within our DPD model, different types of beads have identical masses and cutoff
distances for pairwise interactions. For the sake of transferability, the mass, length and
time scales are all normalized. The unit length is taken to be the cutoff distance r0. The
unit mass is m for all the beads and is set to unity. In addition, the unit energy is defined
by the thermal energy kBT . All other dimensional quantities can thus be uniquely made
dimensionless in terms of these basic units (and vice versa). The time step in our DPD
simulations is chosen as ∆t = 0.01τ , with τ =

√
mr20/kBT . The number density of

beads in the simulation box is fixed at 3/r30 [12]. The velocity-Verlet integration algorithm
is adopted for the time integration. The reduced units can be mapped to SI units using a
real bilayer thickness and a measured value for the in-plane diffusion coefficient of lipids, as
shown in previous studies [2, 3]. From the experiments, the thickness of the membrane is
dHH ≈ 3.53 nm [13] and the thickness of the planar membrane in our simulation is dHH ≈ 4
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r0. The physical length scale could then be obtained as r0 ' 0.9 nm. Comparing the
experimental lipid lateral diffusion coefficient D ' 5 µm2/s of the DMPC [14] with the
one from our simulation D ' 7.3 × 10−2 r20/τ , we obtain the physical time scale τ = 11.8

ns. Periodic boundary conditions are applied along all directions of the simulation box. All
the simulations are performed by using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS), distributed by Sandia National Laboratories [15].

1.3. N-varid method

Due to the elasticity of the lipid membrane, the tension of membranes in cells can be adjusted,
changing from 0.01 to 10 mN/m. [16] The N -varied DPD method is applied during the
membrane wrapping process to ensure a constant tension of the planar membrane. [7,8,17–19]
In practice, boundaries of the lipid bilayer are treated as a lipid reservoir for addition and
removal of lipids. If the lipid number per unit area is larger (or smaller) than the target
density ρ, lipid molecules will be deleted (or inserted) into this boundary region to maintain
a constant lipid number density. Meanwhile, a corresponding number of water molecules
will be randomly inserted into (or deleted from) the simulation box to ensure a constant
bead density of 3.0/r30 in the simulation box. The target density ρ is taken based on the
relation between membrane tension and lipid area given in Fig. S1. By using the N -varied
DPD protocol, the lipid density in the membrane can easily be controlled to maintain the
membrane’s lateral tension during the membrane wrapping process.

1.4. Simulation Protocol

To prepare a PEGylated liposome, lipid molecules are firstly randomly placed into a
simulation box to form a liposome through a self-assembly process at temperature T = 1.0.
Subsequently, a certain number of lipids in the outer layer is randomly chosen to be grafted
with PEG chains on the lipid head beads, in accord with the molar ratio of the targeted
PEGylated lipid. A PEGylated liposome then further relaxes for a duration of 106 τ at
T = 1.0. To prepare a PEGylated bicelle, a small patch of a planar bilayer is first relaxed
in a simulation box. Afterwards, as certain number of lipids in the upper and lower leaflet
are randomly chosen to graft with PEG chains on the lipid head beads. Afterwards, we
enlarge the simulation box in the lateral direction while keeping the size of the PEGylated
bilayer. The space in the edge of simulation box is filled with water to the keep the density
of the system unaltered. A PEGylated bicelle is obtained by relaxing the system for 106 τ at
T = 1.0. The planar membrane bilayer is relaxed in the box of size (70× 70× 100) r30, which
is large enough to avoid an influence of simulation box size on endocytosis. Finally, the fully
relaxed PEGylated liposomes are placed above the planar bilayer to investigate the membrane
wrapping process.
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Figure S2: (A) Illustration of membrane wrapping for an ellipsoidal NPs. The three principle
radii of the ellipsoid are R1, R2 and R3. The red part in the NP denotes the region that
wrapped by membrane. While the blue part of the NP represents the unwrapped part of NP.
(B) Illustration of cross cutting of the ellipsoidal NP.

1.5. Computation of membrane energy

To estimate the membrane elastic energy, we assume that a planar membrane wraps around a
ellipsoidal NPs as given in Fig. S2(A). The three principle radii of the ellipsoid we denote by
R1, R2 and R3. The ellipsoidal surface can be parameterized as

x = R1 cosφ sin θ, y = R2 sinφ sin θ, z = R3 cos θ, (5)

where 0 ≤ θ < π and 0 ≤ φ < 2π. When R1 = R2 = R3, the ellipsoid returns to a spherical
shape. If R1 = R2, the ellipsoid is symmetric in the plane of the membrane. An area element
dS and the mean curvature H on any point of the ellipsoidal surface can be expressed as the
function of θ and φ as follows [20]

dS(θ, φ) = sin(θ)
√
R2
c sin2 θ(R2

1 sin2 φ+R2
2 cos2 φ) +R2

1R
2
2 cos2 θ dφdθ, (6)

H(θ, φ) =
R1R2R3[3(R2

1+R2
2)+2R2

3+(R2
1+R2

2−2R2
3) cos(2θ)−2(R2

1−R2
2) cos(2φ) sin2θ]

8{R2
1R

2
2 cos2 θ +R2

3[R
2
2 cos2 φ+R2

1 sin2 φ] sin2θ}3/2
(7)

For simplicity, we consider a membrane patch that wraps around the NPs. Additionally,
we assume that the membrane wrapping follows the evolution of θ as given in Fig. S2(B).
Therefore, the wrapping fraction f of the ellipsoidal NPs is a function of parameter θ only,
and defined by

f(θ) =

∫ θ
0

∫ 2π

0
dS(θ′, φ)∫ π

0

∫ 2π

0
dS(θ′, φ)

, (8)

with dS(θ′, φ) from Eq. 6. According to Helfrich’s theory [21, 22], the membrane elastic
energy can be expressed as:

Em = Embend + Emtens = 2κm

∫
H2dS + σ∆S, (9)

where κm is the bending rigidity of the membrane, σ is the membrane tension, and ∆S is the
excess area induced by membrane bending. Specifically, with the area element dS and mean
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curvature H at hand, the membrane bending energy at a certain wrapping fraction f can be
written as

Embend(θ) = 2κm

∫ θ

0

∫ 2π

0

H2(θ′, φ)dS(θ′, φ). (10)

Additionally, the membrane stretching energy can be obtained as:

Emtens(θ) = σ

[∫ θ

0

∫ 2π

0

dS(θ′, φ) − πR1 sin(θ)R2 sin(θ)

]
. (11)

As we can see for the expressions above, the membrane elastic energy is a function of θ.
The integrals cannot be performed analytically; the integral over φ alone can be expressed in
terms of an elliptic integral. Given the expressions of Eqs. 8, 10 and 11, the critical membrane
tension can be directly obtained by following the Eq. 4 in the main text.
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2. Results

2.1. Membrane wrapping process for PEGylated liposome under the membrane tension of
0.09kBT/r

2
0

The membrane wrapping processes for PEGylated liposomes with PEG molar ratios of 50%
mol, 60% mol and 70% mol are given in Fig. S3. The membrane tension of these three cases
is maintained at 0.09kBT/r

2
0. As we can see from Fig. S3(A) at 50% mol, the PEGylated

liposome quickly adheres on the membrane due to the ligand-receptor binding (at t = 59

µs). Additionally, the membrane starts to bend and wrap around the liposome. During this
process, the PEG polymers keep aggregating within the wrapped region of the liposome.
Finally, the liposome is partially wrapped and trapped on the membrane. The membrane
wrapping process of 40% mol PEGylated liposome is similar to the one of the 50% mol
PEGylated liposome. The membrane wrapping process of 60% mol PEGylated liposome as
shown in Fig. S3(B) is however different. Along with the aggregation of PEG polymers
at t = 280 µs, the lipids on the contact edge of the liposome start to protrude and to
assume a tubular shape. This protruding of the lipid might help releasing the increased steric
interaction caused by aggregation. Furthermore, with the formation of a tubular shape, the
space occupied by the water inside is decreased (at t = 1000 µs). Finally, the 60% mol
PEGylated liposome is also trapped on the membrane. At 70% mol, the lipids on the contact
edge of the liposome protrude as well. Moreover, with the increase of PEG polymer number,
the tubular shape further reduces the space available to water, which in turns produces a large
osmotic pressure, ultimately leading to liposome rupture at t = 210 µs. Finally, the ruptured
70% mol PEGylated liposome deforms into a strip-like shape that is trapped on the membrane.

2.2. Membrane wrapping process for PEGylated bicelle under the membrane tension of
0.09kBT/r

2
0

The membrane wrapping processes for the PEGylated bicelle with PEG molar ratios of 50%
and 70% mol are given in Fig. S4. The membrane tension for the two cases is maintained at
0.09kBT/r

2
0. At 50% mol, the PEGylated bicelle is finally trapped on the membrane and the

bicelle keeps a disc-like shape during the whole membrane wrapping process. The membrane
wrapping process of the 40% mol PEGylated bicelle is similar to that of the 50% mol
PEGylated bicelle. At 70% mol, the PEGylated bicelle is also partially wrapped. Interestingly,
with the aggregation of PEG polymers in the wrapped region, the bicelle deforms into a strip-
like shape to release the increased steric force. The membrane wrapping process of 60%
mol PEGylated bicelle is similar to the that of 70% mol PEGylated bicelle at the membrane
tension of 0.09kBT/r

2
0.
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Figure S3: Membrane wrapping process for PEGylated liposome under the membrane
tension of 0.09kBT/r

2
0. (A-C) Snapshots during membrane wrapping process for PEGylated

liposomes with PEG molar ratios of 50 %mol, 60 %mol, and 70 %mol.
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2
0. (A-B) Snapshots taken during the membrane wrapping processes for

PEGylated liposomes with PEG molar ratios of 50% mol and 70% mol.
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Figure S5: Projected PEG volume fraction distribution and end-to-end distance. Evolution of
the PEG volume fraction distribution of the (A) PEGylated liposome and (B) PEGylated
bicelle. Evolution of PEG polymers end-to-end distance for (C) PEGylated liposome and (D)
PEGylated bicelle. The PEG molar ratio for both liposome and bicelle is 50% mol; the
membrane tension is 0.09kBT/r

2
0 for both liposome and bicelle. Because of the partially

wrapped state at the end, the PEG volume fraction remains highly inhomogeneous. Also, the
end-to-end distance of PEG polymers remains at a large value.
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Figure S6: (A) Snapshots of bicelle deformation during the membrane wrapping process.
The configurations in the upper panel are cross cuttings of the bicelle at different times. The
snapshots in the lower panel are the corresponding top views of the same bicelles. (B)
Evolution of the three principal moments of the gyration tensor of the bicelle during the
membrane wrapping process. The corresponding snapshots of the membrane wrapping
process are given in Fig. 2(B) in the main text. The snapshots of cross cuttings in (A) show a
flat surface plane for the bicelle during the entire wrapping process. In (B), the in–plane
principal moments r2gz and r2gy change dramatically during the deformation of the bicelle,
while the out–of–plane plane principal moment r2gx keeps almost constant at a small value.
The cross cutting of the bicelle in (A) and the principal moment r2gx suggest that the
curvature of the bicelle barely changes during the membrane wrapping process.



CONTENTS 13

0.0 0.2 0.4 0.6 0.8 1.0
Wrapping fraction

0

5

10

15

20

Ra
di

us
 (r

0)
R1 R2 R3
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PEGylated bicelle. The corresponding snapshots of the membrane wrapping process are
given in Fig. 2(B) in the main text. Based on the data shown here, the three principle radii of
the PEGylated bicelle at the most deformed state around the critical wrapping fraction fc are
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Figure S8: (A) Comparison between critical membrane tensions of spherical and oblate NPs.
The surface area of these NPs is assumed to be identical. The radius of the spherical NP is
taken as R = 14.5 r0. The shape of the oblate ellipsoidal NP is specified by R1 = R2 > R3,
where R1, R2 and R3 are its principle radii. The curve with aspect ratio R1/R3 = 1

represents the spherical NPs. The membrane bending rigidity is taken as 6 kBT . (B) Cross
wrapping fraction against aspect ratio R1/R3. The cross wrapping fraction is defined as the
wrapping fraction where the oblate starts to have a larger critical membrane tension.
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