Supporting Information

Self-limiting electrode with double-carbon layers as walls for efficient

sodium storage performance

Yinghui Wang,^a Deyang Zhang,^a Yangbo Wang,^a Yingge Zhang,^a Xianming Liu,^b Weiwei Zhou,^{*c} Jang-Kyo Kim,^d and Yongsong Luo^{*a}

^aKey Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, P. R. China.

^cSchool of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China.

^dDepartment of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.

^{*} Corresponding author. E-mail: ysluo@xynu.edu.cn (Y. S. Luo), Tel./fax: +86 376 6390801. zhouweiwei@hit.edu.cn (W. W. Zhou), Tel./fax: +0631-5687157.

Fig. S1 (a,b) Typical FESEM image of CNT@SnO₂@NCT.

Fig. S2 TGA curves of CNT and CNT@SnO₂@NCT. This pyrolysis process was carried out in oxygen at a heating rate of 10 °C min⁻¹.

Fig. S3 The survey scan XPS spectrum of CNT@SnO₂@NCT.

Fig. S4 Nitrogen adsorption/desorption isotherms of the $m-SnO_2$. Inset is

the pore size distributions.

Materials	Current Density (A g ⁻¹)	Capacity (mAh g ⁻¹)	Cycle Numbers	Ref.
CNT@SnO2@PPy	0.1	226	100	2
SnO ₂ /C	0.05	240	50	3
SnO ₂ nanowires	0.1	189	50	4
Sn/SnO ₂ /PC	0.05	265	50	5
SnO ₂ /GNS-SCCO ₂	0.1	239	100	6
SnO ₂ @C/CF	0.5	171	100	7
SnO ₂ -N-GNS	0.05	280	50	8
CNT@SnO2@G	0.2	180	300	9
SnSb/SnO ₂ /Sn/C	0.05	305	40	10
SnO ₂ QDs/GA	0.05	319	50	11
SnO ₂ @RGO	0.05	236	100	12
SnO ₂ /NG	0.04	238	100	13
SnO ₂ microfibers	0.02	240	30	14
SnO ₂ /C nanofibers	0.1	306	200	this work

Table S1. A comparison of SnO_2 -based electrode materials for SIBs.

References

- 1. Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao and H. Qi, *J. Power Sources*, 2016, **324**, 447-454.
- 2. J. Yuan, Y. Hao, X. Zhang and X. Li, *Colloids and Surfaces A: Physicochem.* Eng. Aspects, 2018, **555**, 795-801.
- 3. Y. C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y. S. Meng and S. Okada, *J. Power Sources*, 2015, **284**, 287-295.
- 4. S. Mukherjee, N. Schuppert, A. Bates, J. Jasinski, J.-E. Hong, M. J. Choi and S. Park, *J. Power Sources*, 2017, **347**, 201-209.
- X. Li, X. Li, L. Fan, Z. Yu, B. Yan, D. Xiong, X. Song, S. Li, K. R. Adair and D. Li, *Appl. Surf. Sci.*, 2017, **412**, 170-176.
- J. Patra, H.-C. Chen, C.-H. Yang, C.-T. Hsieh, C.-Y. Su and J.-K. Chang, Nano Energy, 2016, 28, 124-134.
- 7. X. Ao, J. Jiang, Y. Ruan, Z. Li, Y. Zhang, J. Sun and C. Wang, *J. Power Sources*, 2017, **359**, 340-348.
- G.-Z. Wang, J.-M. Feng, L. Dong, X.-F. Li and D.-J. Li, *Appl. Surf. Sci.*, 2017, 396, 269-277.
- 9. D. Zhou, X. Li, L.-Z. Fan and Y. Deng, *Electrochim. Acta*, 2017, **230**, 212-221.
- 10. J.-C. Kim and D.-W. Kim, *Electrochem. Commun.*, 2014, 46, 124-127.
- 11. Y. Wang, Y. Jin, C. Zhao, Y. Duan, X. He and M. Jia, *Mater. Lett.*, 2017, **191**, 169-172.
- 12. M. Yang, X. Li, B. Yan, L. Fan, Z. Yu and D. Li, J. Alloys Compd., 2017, 710, 323-330.
- 13. X. Xie, D. Su, J. Zhang, S. Chen, A. K. Mondal and G. Wang, *Nanoscale*, 2015, 7, 3164-3172.
- 14. Y. Lu, M. Yanilmaz, C. Chen, M. Dirican, Y. Ge, J. Zhu and X. Zhang, *ChemElectroChem*, 2015, **2**, 1947-1956.