## **Porphyrin-Based Metal-Organic Frameworks: Hydrogen**

## **Protonation Induced Q band Absorption**

Yuewu Zhao,<sup>a</sup> Xue Cai,<sup>a,c</sup> Ye Zhang,<sup>a</sup> Changchong Chen,<sup>a</sup> Jine Wang,<sup>\*,a</sup> and Renjun

Pei\*,a,b

<sup>a</sup>CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

<sup>b</sup>School of Nano Technology and Nano Bionics, University of Science and Technology of China,

Hefei, 230026, China.

<sup>c</sup>Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow

University, Suzhou, 215004, China.

E-mail: jewang2012@sinano.ac.cn; rjpei2011@sinano.ac.cn; Tel: +86-512-62872776.



Figure S1. (a) FT-IR, (b) XRD, (c)  $N_2$  adsorption-desorption isotherms, and (d) pore size distribution of the prepared Gd-TCPP MOFs nanosheets. The Gd-TCPP shows an approximate type I Langmuir isotherms with a Brunauer-Emmett-Teller surface area of 646.4 m<sup>2</sup> g<sup>-1</sup>.



**Figure S2.** (a) Remaining rate of Gd-TCPP MOFs nanosheets obtained by hydrochloric acid treatment and centrifugation with the different pH. Inset is the photograph of supernatants obtained after hydrochloric acid treatment and centrifugation. (b) UV-vis absorption of the initial concentration of Gd-TCPP MOFs nanosheets, and UV-vis absorption of the residues in the solution after hydrochloric acid treatment and centrifugation at pH=0.5, 1.



**Figure S3.** (a) FT-IR, (b) XRD, (c) N<sub>2</sub> adsorption-desorption isotherms, and (d) pore size distribution of the Gd-(H<sub>2</sub>TCPP)<sup>2+</sup>. The Gd-(H<sub>2</sub>TCPP)<sup>2+</sup> showed an approximate type II Langmuir isotherms with a Brunauer-Emmett-Teller (BET) surface area of 169.96 m<sup>2</sup> g<sup>-1</sup>.



**Figure S4.** UV-vis absorption of (a) Zn-TCPP MOFs nanosheets and (b) acid-treated Zn-TCPP MOFs nanosheets.



Figure S5. UV-vis absorption of (a) TPPS and (b) acid-treated TPPS.



**Figure S6.** UV-vis absorption and photograph of the acid-treated and recovered TCPP.



**Figure S7.** UV-vis absorption of TCPP, CuTCPP, and acid-treated CuTCPP (pH=1.0). The CuTCPP was prepared by reacting TCPP with copper acetate.



**Figure S8.** TEM and EDS images of (a) Gd-TCPP/MnO, (b) Gd-TCPP/MgO, (c) Gd-TCPP/Fe<sub>2</sub>O<sub>3</sub>, and (d) Gd-TCPP/CuO nanohybrids.



**Figure S9.** XRD patterns of the Gd-TCPP/MnO, Gd-TCPP/MgO, Gd-TCPP/Fe<sub>2</sub>O<sub>3</sub>, Gd-ZnTCPP/ZnO, and Gd-TCPP/CuO nanohybrids.



**Figure S10.** Tyndall effect has been observed for the Gd-TCPP, Gd-TCPP/CuO, Gd-ZnTCPP/ZnO, Gd-TCPP/Fe<sub>2</sub>O<sub>3</sub>, Gd-TCPP/MgO, and Gd-TCPP/MnO nanohybrids.



Figure S11. FT-IR of the (a) Gd-ZnTCPP/ZnO and (b) Gd-TCPP/MgO nanohybrids.



Figure S12. (a)  $N_2$  adsorption-desorption isotherms and (b) pore size distribution of the Gd-TCPP/MgO nanohybrids. The Gd-TCPP/MgO shows an approximate type I Langmuir isotherms with a Brunauer-Emmett-Teller surface area of 608.6 m<sup>2</sup> g<sup>-1</sup>.



**Figure S13.** (a) Full XPS spectrum, N 1s spectrum, and C 1s spectrum of the Gd-TCPP nanosheets. (b) Full XPS spectrum, N 1s spectrum, and Mg 1s spectrum of the Gd-TCPP/MgO nanohybrids. (c) Full XPS spectrum, N 1s spectrum, and Zn 2p spectrum of the Gd-ZnTCPP/ZnO nanohybrids.



Figure S14. TEM image of the acid-treated Gd-TCPP/Fe<sub>2</sub>O<sub>3</sub> nanohybrids.



Figure S15. TEM images of the acid-treated Gd-ZnTCPP/ZnO nanohybrids.

| MOFs                | Porphyrin             | Porphyrin | $S_{BET} (m^2 g^{-1})$ | Q-band | Ref        |
|---------------------|-----------------------|-----------|------------------------|--------|------------|
|                     |                       | core      |                        | number |            |
| COF-366-Co          | Co(TAP)               | Со        | 1360                   | 2      | <b>S</b> 1 |
| Co-TCPP(Fe)         | TCPP(Fe)              | Fe        | -                      | 2      | S2         |
| M-UiO               | H <sub>2</sub> DBP-Pt | Pt        | -                      | 2      | <b>S</b> 3 |
| Zn-TCPP(BP)         | TCPP                  | Zn        | 483                    | 2      | S4         |
| ${CuL-[AlOH]_2}_n$  | H <sub>6</sub> L      | Cu        | -                      | 2      | S5         |
| Ru-TBP-Zn           | $H_4TBP$              | Zn        | 422                    | 2      | <b>S</b> 6 |
| Ru-TBP              | H <sub>4</sub> TBP    | None      | 441                    | 4      | <b>S</b> 6 |
| DBP-UiO             | H <sub>2</sub> DBP    | None      | 558                    | 4      | <b>S</b> 7 |
| PCN-222             | H <sub>2</sub> TCPP   | None      | 1728                   | 4      | <b>S</b> 8 |
| Gd-TCPP             | TCPP                  | None      | 646.4                  | 4      | This work  |
| Gd-TCPP/MgO         | TCPP                  | None      | 608.6                  | 4      | This work  |
| $Gd-(H_2TCPP)^{2+}$ | TCPP                  | Н         | 169.96                 | 1      | This work  |

**Table S1.** Summary of the different porphyrin-based MOFs materials.



Figure S16. (a) Schematic diagram of the layered Gd-TCPP nanosheets. (b, c) TEM

and (d) SEM images of the acid-treated Gd-TCPP nanosheets.



**Figure S17.** SEM images of the Gd-TCPP with the acid-treated at (a) pH=3.0 and (b) pH=0.5.

## References

- S1. S. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, *Science*, 2015, 349, 1208–1213.
- S2. Y. Wang, M. Zhao, J. Ping, B. Chen, X. Cao, Y. Huang, C. Tan, Q. Ma, S. Wu, Y.
  Yu, Q. Lu, J. Chen, W. Zhao, Y. Ying and H. Zhang, *Adv. Mater.* 2016, 28, 4149–4155.
- S3. R. Xu, Y. Wang, X. Duan, K. Lu, D. Micheroni, A. Hu and W. Lin, J. Am. Chem. Soc., 2016, 138, 2158–2161.
- S4. Y. Zhao, L. Jiang, L. Shangguan, L. Mi, A. Liu and S. Liu, J. Mater. Chem. A, 2018, 6, 2828–2833.
- S5. W. Zhang, J. Lu, X. Gao, P. Li, W. Zhang, Y. Ma, H. Wang and B. Tang, Angew. Chem. Int. Ed., 2018, 57, 1–6.
- S6. G. Lan, Y. Y. Zhu, S. S. Veroneau, Z. Xu, D. Micheroni and W. Lin, J. Am. Chem. Soc., 2018, 140, 5326–5329.
- S7. K. Lu, C. He and W. Lin, J. Am. Chem. Soc., 2014, 136, 16712–16715.
- S8. H. Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. H. Yu and H. L. Jiang, J. Am. Chem. Soc., 2015, 137, 13440–13443.