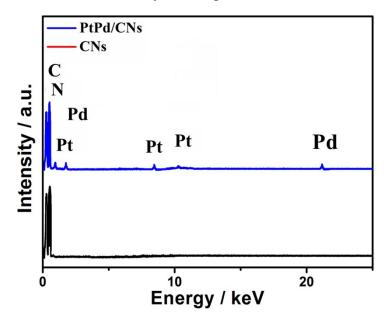
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Unraveling Template-free Fabrication of Carbon Nitride Nanorods Codoped with for Efficient Electrochemical and Photoelectrochemical Carbon Monoxide Oxidation at Room Temperature

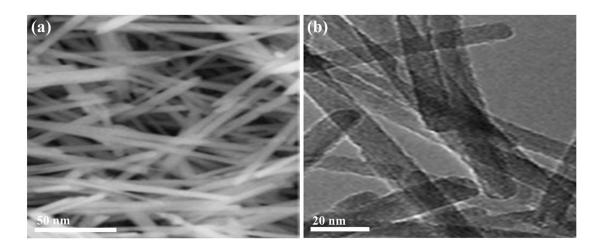
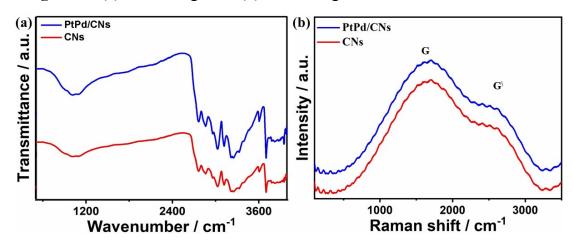

Kamel Eid, Mostafa H. Sliem, and Aboubakr M. Abdullah*

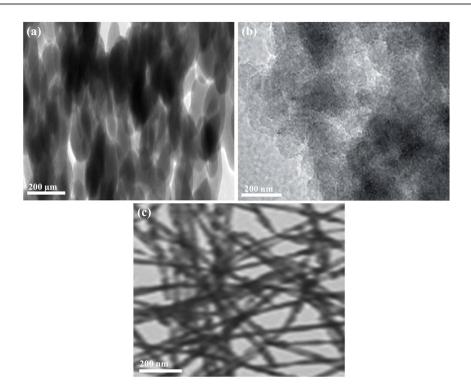
Center for advanced materials, Qatar University, Doha 2713, Qatar.

*E-mail: bakr@qu.edu.qa

Figure S1. Schematic shows the synthesis process of PtPd/CNs nanorods

Figure S2. EDX analysis of PtPd/CNs nanorods relative to metal-free CNs nanorods.


Figure S3 (a) SEM image and (b) TEM image of metal-free CNs nanorods.

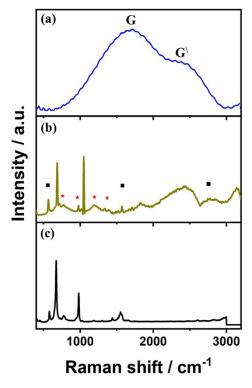

Figure S4. (a) FTIR spectra and (b) Raman spectra of PtPd/CNs nanorods relative to CNs nanorods.

Table S1. Comparison the Surface area of our developed CNs nanorods with previous reported CNs-based nanostructures

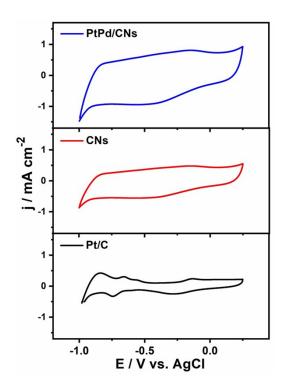

Catalyst	Morphology	BET surface area m ² g ⁻	Reference
CNs	Nanorods	155.2	Our work
CN600	Long Needles	99	1
CNs	Nanotubes Nanofibers	32.27 12.96	2
CNs	Nanosheets	46.2	3
CNs	Nanosheets	84.2	4
CNs- Triton- 0.6	Nanoporous sheets	116	51
C ₃ N ₄	Nanoporous sheets	123	6
CN-24-1.0 1=	Nanoporous sheets 24 represents size of colloidal SiO ₂	130	7
	1 represents SiO ₂ /cyanamide ratio		

Figure S5 (a) TEM images of aggregated CNs prepared in the absence of NaNO₃ and HCL solutions, (b) CNs nanosheets obtained by the quick addition of NaNO3 and HCL solution, and (c) CNs nanowires formed using ethanol-mediated solution instead of glycol-mediated solution.

Figure S6. Raman spectra of (a) PtPd/CNs nanorods, (b) Pt/Pd/melon formed after polymerization of melamine, and (c) pure melamine. The asterisks and boxes indicate the Pt/Pd bonded to N and polycondensation of melamine.

Figure S7. CVs of the PtPd/CNs and CNs nanorods compared to commercial Pt/C catalyst in N_2 -staurated aqueous solution of 0.1 M KOH at 50 mV s⁻¹ at room temperature.

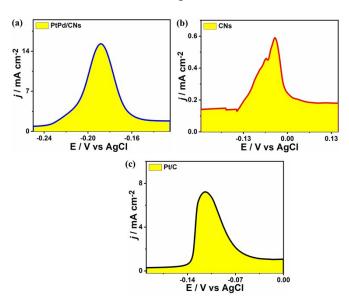
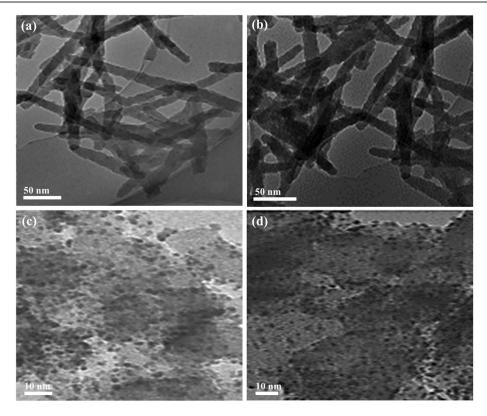



Figure S8. The Co-adsorbed amount over the as-synthesized materials.

Figure S9. TEM image of (a-b) PtPd/CNs nanorods and (c-d) before and after CO-durability tests, respectively.

References

- 1. J. Barrio, L. Lin, P. Amo-Ochoa, J. Tzadikov, G. Peng, J. Sun, F. Zamora, X. Wang and M. Shalom, *Small*, 2018, **14**, 1800633.
- 2. M. Tahir, N. Mahmood, J. Zhu, A. Mahmood, F. K. Butt, S. Rizwan, I. Aslam, M. Tanveer, F. Idrees and I. Shakir, *Scientific reports*, 2015, **5**, 12389.
- 3. H. Ma, Z. Shi, Q. Li and S. Li, *Journal of Physics and Chemistry of Solids*, 2016, **99**, 51-58.
- 4. Y. Wang, J. Hong, W. Zhang and R. Xu, *Catalysis Science & Technology*, 2013, **3**, 1703-1711.
- 5. Y. Wang, X. Wang, M. Antonietti and Y. Zhang, *ChemSusChem: Chemistry & Sustainability Energy & Materials*, 2010, **3**, 435-439.
- 6. Y. Li, X. Xu, P. Zhang, Y. Gong, H. Li and Y. Wang, *Rsc Advances*, 2013, **3**, 10973-10982.
- 7. K. Maeda, R. Kuriki, M. Zhang, X. Wang and O. Ishitani, *Journal of Materials Chemistry A*, 2014, **2**, 15146-15151.