Electronic Supplementary Information

Facile sequential ion exchange strategy to synthesize CoSe₂/FeSe₂

double-shelled hollow nanocuboids for highly active and stable

oxygen evolution reaction

Chunyang Xu,^{a,1} Qinghao Li,^{a,1} Junling Shen,^{a,1} Ze Yuan,^a Jiqiang Ning,^b Yijun Zhong,^a Ziyang Zhang^b and Yong Hu*^a

^aKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department

of Chemistry, Zhejiang Normal University, Jinhua 321004, China.

E-mail: yonghu@zjnu.edu.cn; yonghuzjnu@163.com

^bVacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.

¹C. Xu, Q. Li and J. Shen contributed equally.

Fig. S1 (a, b) SEM images and (c, d) TEM images of the as-prepared Co-precursor NCs.

Fig. S2 XRD pattern of the as-prepared CoFe-PBA DS-HNCs.

Fig. S3 (a) XRD pattern and (b) EDX spectrum of the as-prepared CoSe₂/FeSe₂ DS-HNCs.

Fig. S4 STEM image and corresponding EDS line scanning of a single CoSe₂/FeSe₂ DS-HNC.

Fig. S5 N_2 adsorption-desorption isotherm and pore size distribution (inset) of the as-prepared CoSe₂/FeSe₂ DS-HNCs.

Fig. S6 (a) SEM image and (b) XRD pattern of the as-prepared CoSe₂ NPs.

Fig. S7 Cyclic voltammogram (CV) curves of $CoSe_2/FeSe_2$ DS-HNCs (a) and $CoSe_2$ NPs (c) in the double layer region at scan rates of 2, 4, 6, 8 and 10 mV s⁻¹ in 1.0 M KOH; (b) and (d) current density as a function of scan rate derived from (a) and (c), respectively.

Fig. S8 LSV curve of RuO₂ for OER.

To achieve the current density of 10 mA cm⁻², RuO₂ catalyst needs an overpotential of 290 mV for OER.

Fig. S9 SEM images of CoFe-PBA samples by using different amount of K₃[Fe(CN)₆]: (a, b) 20 mg, CoFe-PBA DS-HNCs-2, (c, d) 40 mg, CoFe-PBA DS-HNCs, (e, f) 60 mg, CoFe-PBA DS-HNCs-6 and (g, h) 80 mg, CoFe-PBA DS-HNCs-8.

Fig. S10 SEM images, corresponding EDX patterns and the element contents (inset) of different CoSe₂/FeSe₂ DS-HNCs samples: (a, b) CoSe₂/FeSe₂ DS-HNCs-2, (c, d) CoSe₂/FeSe₂ DS-HNCs, (e, f) CoSe₂/FeSe₂ DS-HNCs-6 and (g, h) CoSe₂/FeSe₂ DS-HNCs-8.

Fig. S11 LSV curves of different CoSe₂/FeSe₂ DS-HNCs samples.

	CoSe ₂ /FeSe ₂ DS-	CoSe ₂
	HNCs	NPs
$R_{s} \left(\Omega \ cm^{2} ight)$	1.56	1.06
$R_{ct}(\Omega~cm^2)$	2.52	7.04
CPE1-T	0.49	0.03
CPE1-P	0.97	0.71

Table S1. EIS data of $CoSe_2/FeSe_2$ DS-HNCs and $CoSe_2$ NPs for OER.

Fig. S12 The LSV curves for the CoSe₂/FeSe₂ DS-HNCs before and after 1000 cycles.

Fig. S13 XPS survey spectrum (a) and high-resolution XPS spectra of Co 2p (b), Fe 2p (c) and Se 3d (d) of the as-prepared CoSe₂/FeSe₂ DS-HNCs after OER test.

Fig. S14 SEM images of the as-prepared CoSe₂/FeSe₂ DS-HNCs after OER test.

	Overpotential (mV) at 10 mA cm ⁻²	References
Catalysts		
CoSo, nonochoota	320	J. Am. Chem. Soc.
$CoSe_2$ nanosneets		2014 , <i>136</i> , 15670.
	324	Adv. Mater.
C0 _{0.85} Se		2016 , <i>28</i> , 77.
A - C-S- h-H	320	Angew. Chem. Int. Ed.
Ag-CoSe ₂ -belt		2017 , <i>56</i> , 328.
	320	Chem. Mater.
$N1_{0.88}C0_{1.22}Se_4$		2017 , <i>29</i> , 7032.
	250	ACS Catal.
(N1,C0)Se-GA		2017 , <i>7</i> , 6394.
C- C- ONC	320	J. Mater. Chem. A
C00.85Se@INC		2017 , <i>5</i> , 7001.
N.C.	290	Adv. Energy Mater.
INISE		2018 , <i>8</i> , 1702704.
E. damed NCC.	268	Angew. Chem. Int. Ed.
Fe-doped N1Se ₂		2018 , <i>57</i> , 4020.
	260	ACS Appl. Mater. Interfaces
FeSe ₂ (<i>a</i> CoSe ₂ /rGO		2018 , <i>10</i> , 19258.
	251	Adv. Mater.
Fe _{0.09} Co _{0.13} -N1Se ₂		2018 , <i>30</i> , 1802121.
CoSe ₂ /FeSe ₂ DS-HNCs	240	This work

 Table S2. Comparison of OER performance with recently reported metal selenides catalysts in alkaline medium.