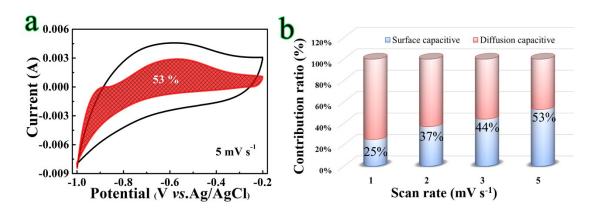

Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019


Asymmetric Supercapacitors with High Energy Densities

Zijun Shi, a Wenjing Chu, a Yongdan Hou, b Yanfang Gao, a,* and Nianjun Yangc,*

- ^a College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, People's Republic of China
- ^b College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- ^c Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany E-mail addresses: yf gao@imut.edu.cn; nianjun.yang@uni-siegen.de

 $\label{eq:Fig.S1} \textbf{Fig. S1} \mbox{ (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution curves of V_2O_5, V_2O_5 @GQDs, and m-V_2O_5 @GQDs$

Fig. S2 (a) Separation of the capacitive (shaded region) and diffusion currents in the $m-V_2O_5@GQDs$ at a scan rate of 5 mVs^{-1} .(b) Contribution ratio of the diffusion-controlled and capacitance-controlled charges at different scan rates.

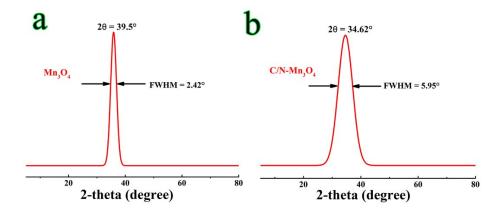


Fig. S3 The curves show full width at half maximum (FWHM) of (a) Mn_3O_4 and (b) $C/N-Mn_3O_4$.

 $\textbf{Table S1.} \ Comparison \ of the \ specific \ capacitance \ of \ other \ V_2O_5\text{-based supercapacitor}.$

Preparation method	Potential	Electrolyte	Current	Specific	Ref.
	window		density	capacitance	
m-V ₂ O ₅ @ GQDs	-1 to -0.2 V	1M Li ₂ SO ₄	2 A g ⁻¹	761 F g ⁻¹	This
rGO/V ₂ O ₅	-0.8 to 0.8 V -	1 M LiClO ₄ /PC	0.1 A g ⁻¹	384 F g ⁻¹	23
V ₂ O ₅ @PPy	0.4 to 0.5 V	1M Na ₂ SO ₄	0.2 A g ⁻¹	334 F g ⁻¹	39
N-GA@V ₂ O ₅ NWAs	-0.3 to 0.7 V	8 M LiCI	0.5 A g ⁻¹	710 F g ⁻¹	40
V_2O_5	-0.2 to 0.6 V	1M Na ₂ SO ₄	2 mV s-1	256 F g ⁻¹	41
N-CNFs/V ₂ O ₅	-0.1 to 1 V	1M Na ₂ SO ₄	0.5 A g-1	595.1 F g-1	42