Supporting Information

Ternary PtRuCu Aerogels for Enhanced Methanol Electrooxidation

Hengjia Wang,^a Yu Wu,^a Xin Luo,^a Lei Jiao,^a Xiaoqian Wei,^a Wenling Gu,^{*a} Dan Du,^b

Yuehe Lin^b and Chengzhou Zhu *a

^aKey Laboratory of Pesticide and Chemical Biology of Ministry of Education,

International Joint Research Center for Intelligent Biosensing Technology and Health,

College of Chemistry, Central China Normal University, Wuhan, 430079, PR China

^bSchool of Mechanical and Materials Engineering, Washington State University,

Pullman, WA, 99164, United States

*Corresponding author.

E-mail:wlgu@mail.ccnu.edu.cn (Wenling Gu)

E-mail: czzhu@mail.ccnu.edu.cn (Chengzhou Zhu)

Materials and Methods

Chemicals

Sodium borohydride (NaBH₄), Chloroplatinic acid (H₂PtCl₆), Nafion solution (5 wt %), Ruthenium chloride hydrate were all purchased from Sinopharm Chemical Reagent Co. Let (Shanghai, China). Copper chloride was purchased from Alfa Aesar. Platinum on graphitized carbon (20% Pt loading) was purchased from Alorich. KOH was obtained from China National Medicines Corporation Ltd. The water in all experiments was prepared in a three-stage Millipore Milli-Q plus 185 purification system and had a resistivity higher than 18.2 M Ω cm. Unless otherwise stated, other reagents were of analytical grade and were used as received.

Apparatus

X-ray Diffraction (XRD) characterization was carried out by a D8 ADVANCE (Bruker, Germany). Scanning electron microscope (SEM) image was obtained by a Quanta FEG250 field-emission environmental SEM (FEI, United States). Transmission electron microscope (TEM) images were from Titan G260-300 (Thermo Fisher, United States). X-ray photoelectron spectroscopy (XPS) measurements were performed by VG Multilab 2000 (Thermo Fisher, United States). Supercritical CO₂ drying was conducted using SPI-DryTM critical point drying apparatus (SPI Supplies, USA). The content of each element in the samples was determined by inductively coupled plasma optical emission spectrometry (ICP-OES) (Agilent 8800).

Synthesis of PtRuCu hydrogels

In a typical synthesis of $Pt_4Ru_1Cu_5$ metallic hydrogels, 0.25 mM H_2PtCl_6 , 0.05 mM $RuCl_3$ · $3H_2O$ and 0.25 mM $CuCl_2$ were added into the 35 mL H_2O , followed by adding 2 mL NaBH₄ (0.05 M) under stirring at 60 °C for 1 min. The resultant solution was allowed to settle still at 60 °C for 2 h. The as-synthesized $Pt_4Ru_1Cu_5$ hydrogels were washed with water for three times. $Pt_4Ru_1Cu_5$ aerogels could be obtained from supercritical fluid CO_2 drying technique. Pt_5Cu_5 , Pt_5Ru_5 and other PtRuCu metallic hydrogels with different chemical compositions were synthesized by varying the mole proportion of Pt, Ru and Cu precursors with the same synthetic process of $Pt_4Ru_1Cu_5$ mentioned above.

Electrocatalytic experiments

All electrochemical measurements were in process with a standard three-electrode system by using electrochemical workstation (CHI-660) at room temperature. The catalyst-modified glassy carbon electrode (GCE, 3 mm diameter) as the working electrode, a Hg/HgCl₂ electrode filled with saturated potassium chloride aqueous solution as the reference electrode and Pt wire as the counter electrode. The GCE was prepared by polishing with 1.0 and 0.05 μ m alumina powder, respectively, and rinsed with deionized water. For methanol oxidation reaction, 2.5 μ L of the as-obtained aerogels (0.2 mg_N/mL) (N represents noble metal) or Pt/C catalyst (1 mg_{pt}/mL) aqueous solution were dropped on the surface of GCE and dried at 50°C, followed by dropping 1.5 μ L of Nafion (0.05 %) and dried at 50 °C.

Figure S1. Seperate figures of PtRuCu aerogels with different compositions, Pt_5Ru_5 , Pt_5Cu_5 and commercial Pt/C in aqueous nitrogen-saturated 0.1 M HClO₄.

samples Pt (%) Ru (%) Cu (%) $Pt_6Ru_1Cu_3$ 45.10 8.82 44.12 Pt₅Ru₁Cu₄ 56.86 8.82 34.31 Pt₄Ru₁Cu₅ 36.00 8.00 56.00 55.00 Pt₅Ru₅ 45.00 --- Pt_5Cu_5 48.00 52.00 ---

Table S1. The composition of the $Pt_6Ru_1Cu_3$, $Pt_5Ru_1Cu_4$, $Pt_4Ru_1Cu_5$, Pt_5Ru_5 and Pt_5Cu_5 aerogels by ICP-OES.

	Pt₄Ru₁Cu₅	Pt₅Ru₅	Pt₅Cu₅
Pt (0) 4f _{7/2}	71.1 eV	71.4 eV	71.3 eV
Pt (0) 4f _{5/2}	74.6 eV	74.9 eV	74.7 eV
Pt (II) 4f 7/2	72.0 eV	72.3 eV	72.1 eV
Pt (II) 4f 5/2	77.0 eV	77.4 eV	77.3 eV

Table S2. XPS peaks for $Pt_4Ru_1Cu_5$, Pt_5Ru_5 and Pt_5Cu_5 aerogels in different regions.

Table S3. ECSA, onset potentials, mass activities and specific activities for Pt₆Ru₁Cu₃,

samples	ECSA	Onset potentials	Mass activities	Specific activities
	(m² g⁻¹)	(vs. SCE)	(A mg _N -¹)	(mA cm ⁻²)
Pt ₆ Ru ₁ Cu ₃	47.87	-0.434	1.55	3.52
Pt₅Ru₁Cu₄	43.54	-0.419	1.34	3.43
$Pt_4Ru_1Cu_5$	56.47	-0.421	2.07	4.10
Pt₅Ru₅	41.34	-0.486	0.32	1.26
Pt_5Cu_5	42.62	-0.421	1.21	2.85
commercial Pt/C	69.99	-0.418	0.74	1.06

Pt₅Ru₁Cu₄, Pt₄Ru₁Cu₅, Pt₅Ru₅ and Pt₅Cu₅ aerogels and commercial Pt/C.

Table S4. The composition of the $Pt_4Ru_1Cu_5$, Pt_5Ru_5 and Pt_5Cu_5 aerogels before and after chronoamperometric experiments by ICP-OES.

samples	Pt (%)	Ru (%)	Cu (%)
Pt₄Ru₁Cu₅	36.00	8.00	56.00
	35.00	5.00	60.00
	45.00	55.00	
Fl5RU5	55.00	45.00	
Pt₅Cu₅	48.00		52.00
	50.00		50.00