Supporting Information

Metallic 1T-phase MoS₂ quantum dots/g-C₃N₄ heterojunctions for enhanced photocatalytic hydrogen evolution

Zhangqian Liang, Benteng Sun, Xuesong Xu, Hongzhi Cui^{*}, Jian Tian^{*}

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Email: cuihongzhi1965@163.com (H. Cui), jiantian@sdust.edu.cn (J. Tian)

Fig. S1. XPS survey spectra of 1T-MoS₂ QDs@g-C₃N₄ composites (15 wt%).

Fig. S2. SEM images of pure g-C₃N₄ NSs.

Fig. S3. Nitrogen adsorption/desorption isotherms of (a) $g-C_3N_4$ NSs and 1T-MoS₂ QDs@ $g-C_3N_4$ composites containing different amounts of 1T-MoS₂ QDs: (b) 1, (c) 3, (d) 5, (e) 7, (f) 9, (g) 15 and (h) 20 wt% (inset shows the corresponding BJH pore size distribution curves).

Table S1. BET surface area of 1T-MoS₂ QDs@g-C₃N₄ composites containing

Samples	BET Surface area (m ² g ⁻¹)
$1T-MoS_2 QDs@g-C_3N_4-1 wt\%$	41.379
$1T-MoS_2 QDs@g-C_3N_4-3 wt\%$	36.004
$1T-MoS_2 QDs@g-C_3N_4-5 wt\%$	47.938
$1T-MoS_2 QDs@g-C_3N_4-7 wt\%$	48.450
$1T-MoS_2 QDs@g-C_3N_4-9 wt\%$	45.018
1T-MoS ₂ QDs@g-C ₃ N ₄ -15 wt%	53.643

different amounts of 1T-MoS2 QDs (1, 3, 5, 7, 9, 15 and 20 wt%).

Fig. S4. UV-vis light absorption spectrum of 1T-MoS₂ QDs.

Fig. S5. Optical photographs of g-C₃N₄ NSs and 1T-MoS₂ QDs@g-C₃N₄ composites

containing different amounts of 1T-MoS2 QDs (1, 3, 5, 7, 9, 15 and 20 wt%).

Fig. S6. (a) UV-vis-NIR diffuse reflectance spectra and (b) band gap values of pure g- C_3N_4 NSs.

Table S2. Hydrogen evolution performance of the as-prepared MoS₂@g-C₃N₄

compared with some of the typical semiconductors.

	evolution (µmol g ⁻¹ h ⁻¹)			
g-C ₃ N ₄ /Ag/MoS ₂	104	100 mg of photocatalysts, 100 mL of aqueous solutions with 15 vol % of TEOA	visible light irradiation, λ > 420 nm	1
g- C ₃ N ₄ /RGO/MoS ₂	317	TEOA aqueous solution	visible light irradiation, λ > 420 nm	2
2D-2D MoS ₂ /g- C ₃ N ₄	1155	50 mg of photocatalysts, 250 ml 0.1 M TEOA aqueous acetone	300 W Xeon lamp, $\lambda > 420$ nm	3
MoS ₂ /g-C ₃ N ₄ /GO	1650	4 mg of photocatalysts, 20 mL aqueous solution containing Na ₂ SO ₃ (0.25 M)	450 W xenon lamp with AM 1.5 filter	4
1T-MoS ₂ /O-g- C ₃ N ₄	1841	10 mg of photocatalysts, 100 mL TEOA/H ₂ O (1:9 by volume)	300 W Xeon arc lamp, $\lambda >$ 400 nm	5
$1T-MoS_2$ QDs@g-C ₃ N ₄ (this paper)	1857	20 mg of photocatalysts, 20 ml TEOA, 80 ml deionized water	300 W Xeon arc lamp with AM-1.5 filter	

Fig. S7. Stability and recyclability of the 1T-MoS₂ QDs@g-C₃N₄ composites (15 wt%).

Fig. S8. (a) Cumulated evolution of $1T-MoS_2 QDs@g-C_3N_4$ composites (15 wt%) of different dosages with the same concentration. (b) Cumulated evolution and (b) photocatalytic H₂ evolution rate of $1T-MoS_2 QDs@g-C_3N_4$ composites (15 wt%) of different dosages and different concentration.

Table S3. Comparison of AQE values over g-C₃N₄ NSs and 11T-MoS₂ QDs@g-C₃N₄ composites containing different amounts of 1T-MoS₂ QDs (1, 3, 5, 7, 9, 15 and 20

Samples	AQE values (%)
g-C ₃ N ₄ NSs	0.15
$1T-MoS_2 QDs@g-C_3N_4-1 wt\%$	1.71
$1T-MoS_2 QDs@g-C_3N_4-3 wt\%$	2.20
1T-MoS ₂ QDs@g-C ₃ N ₄ -5 wt%	2.78
$1T-MoS_2 QDs@g-C_3N_4-7 wt\%$	3.42
$1T-MoS_2 QDs@g-C_3N_4-9 wt\%$	4.54
1T-MoS ₂ QDs@g-C ₃ N ₄ -15 wt%	5.76
1T-MoS ₂ QDs@g-C ₃ N ₄ -20 wt%	4.33

wt%) under simulated solar light.

Fig. S9. Mott-Schottky plot of g-C₃N₄ NSs.

References:

- D. Lu, H. Wang, X. Zhao, K. K. Kondamareddy, J. Ding, C. Li, P. Fang, ACS Sustainable Chem. Eng., 2017, 5, 1436-1445.
- Y.-J. Yuan, Y. Yang, Z. Li, D. Chen, S. Wu, G. Fang, W. Bai, M. Ding, L.-X. Yang, D.-P. Cao, Z.-T. Yu, Z.-G. Zou, ACS Appl. Energy Mater., 2018, 1, 1400-1407.
- 3. Y.-J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Zhen-T. Yu, Z. Zou, *Appl. Catal. B-Environ.*, 2019, **246**, 120-128.
- M. Wang, P. Ju, J. Li, Y. Zhao, X. Han, Z. Hao, ACS Sustainable Chem. Eng., 2017, 5, 7878-7886.
- H. Xu, J. Yi, X. She, Q. Liu, L. Song, S. Chen, Y. Yang, Y. Song, R. Vajtai, J. Lou, H. Li, S. Yuan, J. Wu, P. M. Ajayan, *Appl. Catal. B-Environ.*, 2018, 220, 379-385.