

Figure S1. The low magnification FESEM image of Cu/GCE

Figure S2. The low magnification FESEM image of $Cu(OH)_2$ NTs/GCE

Figure S3. (a-c) FE-SEM images of the fabricated Cu(OH)₂@Co(OH)₂ NT-NSs/GCE at different magnifications, (f) related EDS-mapping images

The EDS-mapping images in Figure S3 (f) demonstrate the uniform distribution of Co, Cu and O elements over the whole surface of the modified electrode, confirming homogeneous insertion of cobalt in the hydroxide $Co(OH)_2$ nanosheets without dissociation.

Figure S4. The EDX spectrum of Cu(OH)2@CoNi-LDH NT-NSs/GCE and the AAS results

Figure S5. The CV responses of $Cu(OH)_2$ @CoNi-LDH NT-NSs/GCE in the (A) absence and (B) presence of 0.4 mM glucose in potential window of -0.6 V to 0.8 V at different scan rates. (a to j): 5 to 150 mV/s

Figure S6. The amperometric responses of $Cu(OH)_2$ @CoNi-LDH NT-NSs/GCE to addition of 1 mM glucose in the presence of fructose, galactose, lactose and sucrose with 0.05 mM concentration

Figure S7. FESEM images of Cu(OH)₂@CoNi-LDH NT-NSs/GSPE at (A) 60 s and (B) 75 s LDH deposition time

Figure S8. (A) FESEM images of Cu(OH)₂@CoNi-LDH NT-NSs/GSPE and related EDXmapping images. (B) The EDX spectra of Cu(OH)₂@CoNi-LDH NT-NSs/GSPE

Table S1. comparison of the performance of our fabricated electrode with previously reported nonenzymatic glucose sensors based on non-precious transition metals (such as Co, Ni and Cu) and their oxide or hydroxide compounds

Electrode Materials	Potential	Response	Sensitivity	Linear Range	Detection	Ref.
		1 ime (s)	(µA/mWI.cm ²)		(μM)	
Cu(OH)2@CoNi-	+0.45	1.8	1895	0.002-3.2	0.6	This
LDH/GCE			1322	3.2-7.7		work
CoOOH nanosheet arrays	+0.5	<4	967	up to 0.5	10.9	1
Co ₃ O ₄ nanoparticles	+0.59	<6	520.7	Up to 1	0.13	2
Nanoporous Co ₃ O ₄ nanowire	+0.6	-	300.8	Up to 0.57	5	3
Co LDH/CC	+0.5	8	1280 540	0.001-0.10 0.10-0.80	0.5	4
RGO-NiCo ₂ O ₄	+0.55	-	960.37	0.001-6.3	0.35	5
nanorods			216.7	6.3-25		
NiCo ₂ S ₄ /Ni/CFP	+0.45	5	283	0.005-6	0.05	6
NiCo ₂ S ₄ /GCE	+0.55	-	858.5	0.005-0.1	2	7
			332.84	0.5-2		
Ni-Co NSs/RGO/GCE	+0.5	2	1773.61	0.01-2.65	3.79	8
Co ₃ O ₄ UNS- Ni(OH) ₂ /GCE	+0.35	5	1089	0.005-0.04	1.08	9
Ni/Al-LDH/Ti foam	+0.7	4	24.45	0.005-10.0	5	10
CuNiCoO ₄ NWs@CC	+0.55	-	1782	0.02-1.4	6.5	11
rGO-chitosn-Cu/Co	+0.45	-	1920	0.015-6.95	10	12
Roselike a-Ni(OH) ₂	+0.4	3	418.8	0.00087-10.53	0.08	13
Ni(OH) ₂ hollow spheres	+0.45		223.39	0.8749–7.781	0.1	14
NiCo LDH/CC	+0.5	5	5120	0.001-1.50	0.12	4
Cu–NiO/GCE	+0.4	<5	171	0.0005-5	0.5	15
CuNiO-GR/GCE	+0.6	-	225.75	0.05-6.9	16	16
CuO _x - CoO _x /rGO/GCE	+0.5	3	507	0.005-0.57	0.5	17
Cu-Co-Ni/rGO	+0.55	<2	104.68	0.01-4.3	3.05	18
MSN/Ni-Co/GCE	+0.5	5	536.62	0.001-5.0	0.39	19
Cu(OH) ₂ nanotube arrays	+0.4	<5	418	Up to 3.0	0.5	20

References

- 1. K. K. Lee, P. Y. Loh, C. H. Sow and W. S. Chin, *Electrochem. Commun.*, 2012, 20, 128.
- 2. C. Hou, Q. Xu, L. Yin and X. Hu, *Analyst*, 2012, **137**, 5803.
- 3. L. Q. Kang, D. P. He, L. L. Bie and P. Jiang, Sens. Actuat. B, 2015, 220, 888.
- 4. X. Wang, Y. Zheng, J. Yuan, J. Shen, J. Hud, A. J. Wang, L. Wu and L. Niu, *Electrochim. Acta*, 2017, **224**, 628.
- 5. Y. Ni, J. Xu, H. Liu and S. Shao, *Talanta*, 2018, 185, 335.
- 6. K. J. Babu, T. Rajkumar, D. J. Yoo, P. Siew-Moi and G. G. Kumar, ACS Sustainable Chem. Eng., 2018, 6, 16982.
- 7. D. Chen, H. Wang and M. Yang, Anal. Method., 2017, 9, 4718.
- 8. L. Wang, X. Lu, Y. Ye, L. Sun and Y. Song, *Electrochim. Acta*, 2013, 114, 484.
- 9. M. R. Mahmoudian, W. J. Basirun, P. W. Woi, M. Sookhakian, R. Yousefi, H. Ghadimi and Y. Alias, *Mater. Sci. Eng. C*, 2016, **59**, 500.
- 10. X. Li, J. Liu, X. Ji, J. Jiang, R. Ding, Y. Hu, A. Hu and X. Huang, Sens. Actuators B, 2010, 147, 241.
- H. Mirzaeia, A. A. Nasiria, R. Mohamadee, H. Yaghoobi, M. Khatami, O. Azizi, M. A. Zaimye and H. Azizi, *Microchem. J.*, 2018, 142, 343.
- 12. L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun and Y. Song, Sens. Actuat., B, 2014, 195, 1.
- 13. P. Lu, Y. Lei, S. Lu, Q. Wang and Q. Liu, Anal. Chim. Acta, 2015, 880, 42.
- 14. P. Lu, Q. Liu, Y. Xiong, Q. Wang, Y. Lei, S. Lu, L. Lu and L. Yao, *Electrochim.* Acta, 2015, 168, 148.
- 15. X. Zhang, A. Gu, G. Wang, Y. Huang, H. Ji and B. Fang, Analyst, 2011, 136, 5175.
- X. Zhang, Q. Liao, S. Liu, W. Xu, Y. Liu and Y. Zhang, *Anal. Chim. Acta*, 2015, 858, 49.
- 17. S. J. Li, L. L. Hou, B. Q. Yuan, M. Z. Chang, Y. Ma and J. M. Du, *Microchim. Acta*, 2016, **83**, 1813.
- 18. H. Liu, X. Lu, D. Xiao, M. Zhou, D. Xu, L. Sun and Y. Song, *Anal. Method.*, 2013, 5, 6360.
- 19. M. Ranjani, Y. Sathishkumar, Y. S. Lee, D. J. Yoo, A. R. Kimd. G. G. Kumar. *RSC Adv.*, 2015, **5**, 57804.
- S. Zhou, X. Feng, H. Shi, J. Chen, F. Zhang and W. Song, Sens. Actuators B, 2013, 177, 445.