Supporting Information

Impact of Cesium in Methylammonium Lead Bromide Perovskites: Insights from the Microstructures, Stability and Photophysical Properties

S. Premkumar,¹ Kaushik Kundu,^{1*} and Siva Umapathy,^{1,2*}

 ¹ Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.
² Indian Institute of Science Education and Research, Bhopal Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.

Corresponding Author Information:

E-mail: kaushik.isi@gmail.com / siva.umapathy@gmail.com

Fig. S1. Photograph of colloidal dispersions of $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskites in cyclohexane under room light.

Fig. S2. (A) Calculated effective tolerance factors and (B) structural distortion in MA_{1-x}Cs_xPbBr₃ ($0 \le x \le 1$) perovskites with cell volume per formula unit and the c/a ratio as a function of composition.

Fig. S3. Gaussian deconvolution of low-frequency Raman spectra of the synthesized (A) $MA_{0.2}Cs_{0.8}PbBr_3$, and (B) $MA_{0.8}Cs_{0.2}PbBr_3$ perovskites. (C and D panels) Raman frequency shift of the individual deconvoluted peaks as a function of composition along with the (D) FWHM of $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskites.

Fig. S4. (A and B panels). Raman spectra of the synthesized $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskites over the high-frequency region (2700-3300 cm⁻¹), i.e., where the C-H and N-H vibrations of methylammonium appear.

Fig. S5. The size distribution histogram of the MA_{1-x}Cs_xPbBr₃ ($0 \le x \le 1$) perovskites.

Fig. S6. SAED patterns of the synthesized (A) MAPbBr₃, (B) $MA_{0.8}Cs_{0.2}PbBr_3$, (C) $MA_{0.6}Cs_{0.4}PbBr_3$, (D) $MA_{0.4}Cs_{0.6}PbBr_3$, (E) $MA_{0.2}Cs_{0.8}PbBr_3$ and (F) CsPbBr₃ perovskites.

Fig. S7. (A) Photoluminescence (PL) spectra of the synthesized $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskites. (B) UV-vis absorption and PL spectra of the synthesized $MA_{1-x}Cs_xPbBr_3$ ($0.6 \le x \le 1$) perovskites. (C) Gaussian deconvolution of PL spectra of the synthesized $MA_{0.8}Cs_{0.2}PbBr_3$ perovskite. (D) FWHM of the PL spectra of the synthesized $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskites.

Name/unit cell parameters	<i>a</i> / Å	<i>b</i> / Å	<i>c</i> / Å	Volume/ Å ³
CsPbBr ₃	8.306058	8.203634	11.79377	803.6259
MA _{0.2} Cs _{0.8} PbBr ₃	8.338306	8.276673	11.62543	802.3109
$MA_{0.4}Cs_{0.86}PbBr_3$	8.326415	8.326415	11.68876	808.8815
$MA_{0.6}Cs_{0.4}PbBr_{3}$	8.43999	11.88780	8.312142	833.9816
MA _{0.8} Cs _{0.2} PbBr ₃	8.436164	11.91719	8.397279	844.2238
MAPbBr ₃	8.493311	12.01103	8.536381	870.8253

Table S1. Unit cell parameters of $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskite samples.

Sample	τ_1 (ns)	τ_2 (ns)	A1	A2	τ_{avg} (ns)	χ^2
CsPbBr ₃	2.92	31.61	0.12	0.88	31.25309637	1.32
MA _{0.2} Cs _{0.8} PbBr ₃	3.55	31.96	0.14	0.86	31.45540893	1.39
MA _{0.4} Cs _{0.6} PbBr ₃	4.20	32.09	0.14	0.86	31.50816259	1.17
MA _{0.6} Cs _{0.4} PbBr ₃	5.09	26.43	0.23	0.77	25.26918919	1.18
MA _{0.8} Cs _{0.2} PbBr ₃	4.39	24.14	0.17	0.83	23.4307771	1.23
MAPbBr ₃	1.06	39.82	0.63	0.37	38.13935641	1.22

Table S2. Fitted lifetime values using a bi-exponential decay model along with the respective % contribution of each component of $MA_{1-x}Cs_xPbBr_3$ ($0 \le x \le 1$) perovskite series.