Supplementary Information

Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@Fe₃O₄/carbonized paper as

efficient freestanding electrode for electrochemical synthesis of ammonia directly from H₂O

and nitrogen

Chun Li, Yongsheng Fu^{*}, Zhen Wu, Jiawei Xia, Xin Wang

Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing

University of Science and Technology, Nanjing 210094, China

* Corresponding authors

E-mail addresses: fuyongsheng@njust.edu.cn, fuyongsheng0925@163.com (Y. S. Fu)

Figure S1. SEM images of Fe-rGO/CP.

Figure S2. NH₃ formation rates of (a) rGO/Fe@Fe₃O₄/CP-1 and (b) Fe/CP in 9 hours.

Figure S3. TEM image of rGO/Fe@Fe₃O₄/CP-1 after electrolysis.

Figure S4. XRD patterns of rGO/Fe@Fe₃O₄/CP-1 before and after electrolysis.

Figure S5. Current densities of Fe/CP in N₂ and Ar saturated electrolyte.

The method used for detection of low concentration ammonia was adapted from the standard methods for the examination of water and wastewater^[1].

Apparatus: a spectrophotometer (Shimadzu UV-1800) was used at fixed wavelength ($\lambda = 420$ nm) with a conventional 1 cm path length cuvette.

Regents used: Nessler's reagent, Auxiliary reagent: 50 g potassium sodium tartrate tetrahydrate dissolved in 100 ml boiled water and keep this solution in dark place, Standard ammonia solution.

Procedure: 10 mL of electrolyte was taken. Sterile syringe filters were used to filter the electrolyte to remove impurities. Then 200 μ L of auxiliary reagent, 300 μ L of Nessler's reagent were added in succession to the sample. After 10 minutes, absorbance measurements were

performed at $\lambda = 420$ nm. Series standard solutions of NH₄⁺ were measured for calibration curve, which was used to calculate the concentration of ammonia. The measurements were repeated 3 times and the mean values were used as the final data.

Figure S6. Calibration curve for colorimetric ammonia using Nessler's reagent.

Table S1. Comparison of studied NRR catalysts.

T⁰C	Cathode/catalyst	Electrolyte	Reactants	Rate, mol s ⁻¹ cm ⁻²	FE, %	Ref.
20	Ru	2 M KOH	N ₂ /H ₂ O	3.43×10 ⁻¹³ (-1.1 V vs Ag/AgCl)	0.28	[2]
25	Pt/C	$Li^+/H^+/NH_4$	N_2/H_2	1.14×10 ⁻⁹ (1.6 V)	0.55	[3]
250	Fe ₂ O ₃ /AC	NaOH–KOH	N_2/H_2O	8.27 × 10 ⁻⁹ (1.55 V)	4.91	[4]
20	Fe ₂ O ₃ -CNTs	Dilute KHCO ₃	N_2/H_2O	3.39×10 ⁻¹² (-2.0 V vs Ag/AgCl)	0.15 at -1.0 V	[5]
25	Mo nanofilm	$0.5 \text{ M H}_2 \text{SO}_4$	N_2/H_2O	3.09×10 ⁻¹¹ (-0.5V)	0.72	[6]
25	ZIF-derived carbon	0.1M KOH	N_2/H_2O	9.44×10 ⁻¹⁰ (-0.3 V vs. RHE)	10.2	[7]
25	THH Au nanorods	1 M KOH	N_2/H_2O	2.69×10 ⁻¹¹ (-0.2 V vs. RHE)	~4.0	[8]
25	Ni wire	0.1 M LiCl/EDA	N_2/H_2O	2.15×10 ⁻¹⁰ (1.8 V)	17.2	[9]
25	Amorphous Au on	0.1 M HCl	N_2/H_2O	1.28×10 ⁻¹⁰ (-0.2 V vs. RHE,	10.1	[10]
	CeO _x /RGO			mol s ⁻¹ mg _{cat.} ⁻¹)		
25	Au-TiO ₂ /Pt plate	0.1 M HCl	N_2/H_2O	3.72×10 ⁻¹⁰ (-0.2 V vs. RHE,	8.11	[11]
				mol s ⁻¹ mg $_{\text{cat.}}^{-1}$)		
25	N doped carbon	$0.05 \text{ M H}_2\text{SO}_4$	N_2/H_2O	1.7 ×10 ⁻¹⁰ (-0.9 V vs. RHE)	1.5	[12]
25	Iron-loaded carbon	0.2 M NaHCO ₃	N_2/H_2O	1.3×10^{-10} (0.3 V vs. RHE)	6.25	This work

References

[1] Standard Methods for the Examination of Water and Wasterwater, 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, **2017**.

- [2] V. Kordali, G. Kyriacou, Ch. Lambrou, Chem. Commun 2000, 17, 1673.
- [3] R. Lan, J.T. Irvine, S. Tao, Sci Rep, 2013, 3, 1145.
- [4] B. Cui, J. Zhang, S. Liu, X. Liu, W. Xiang, L. Liu, H. Xin, M.J. Lefler, S. Licht, *Green Chem.*, 2017, 19, 298.
- [5] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, *Angew Chem Int Ed Engl*, 2017, 56, 2699.
- [6] D. Yang, T. Chen, Z. Wang, J. Mater. Chem. A, 2017, 5, 18967.
- [7] S. Mukherjee, D.A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K.L. More, G. Wang, G. Wu, *Nano Energy*, 2018, 48, 217.
- [8] D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, *Adv Mater*, 2017, 29, 1604799.
- [9] K. Kim, C.Y. Yoo, J.N. Kim, H.C. Yoon, J.I. Han, *Journal of The Electrochemical Society*, 2016, **163**, 1523.
- [10]S.J. Li, D. Bao, M.M. Shi, B.R. Wulan, J.M. Yan, Q. Jiang, Adv Mater, 2017, 29, 1700001.
- [11] M.M. Shi, D. Bao, B.R. Wulan, Y.H. Li, Y.F. Zhang, J.M. Yan, Q. Jiang, *Adv Mater*, 2017, **29**, 1606550.
- [12] Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang, J. Zhao, ACS Catalysis, 2018, 8, 1186.