Supplementary Information

Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot-copper nanocluster nanohybrid

Mengke Wang ^a, Deshuai Kong ^b, Dandan Su ^a, Yang Liu ^a, Xingguang Su ^{a, *}

^a Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012,

PR China

^b State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China

*Corresponding author

Tel.: +86-431-85168352

E-mail address: suxg@jlu.edu.cn

Chemicals and characterizations

conducted RF-5301 PC Fluorescence measurements by Shimadzu were а spectrofluorophotometer equipped with a xenon lamp. Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) were performed by the Hitachi H-800 electron microscope. Fourier transform infrared (FT-IR) spectra were recorded on a Nicolet 400 Fourier transform infrared spectrometer. Dynamic light scattering (DLS) measurement were performed by a Zetasizer Nano ZS90 analyzer at 25 °C. Electrochemical impedance spectroscopy (EIS) was conducted on the CHI 660B electrochemical workstation in 2.5 mM K₃[Fe(CN)₆]/K₄[Fe(CN)₆] with 0.1 M KCl as the supporting electrolyte and a glassy carbon electrode (GCE) was used.

Fig. S1 FT-IR spectra of GQDs.

Fig. S2 Dynamic light scattering analysis of GQDs (A) and CuNCs (B).

Fig. S3 Fluorescence emission spectra of GQDs-ssDNA, GQDs-ssDNA/ascorbate/Cu²⁺ and GQDs-dsDNA/ascorbate/Cu²⁺ system.

Fig. S4 TEM images of GQDs-CuNCs nanohybrid.

Fig. S5 Fluorescence emission spectra of GQDs-CuNCs nanohybrid and CuNCs.

Fig. S6 Fluorescence emission spectra of the GQDs-dsDNA/ascorbate/Cu²⁺ (solid line) and dsDNA/ascorbate/Cu²⁺ (dash line) reaction system treated with T4 PNK, λ exo and T4 PNK/ λ exo.

Fig. S7 Effect of λ exo (A), ATP concentration (B), T4 PNK phosphorylation time (C), λ exo cleavage reaction time (D) on the fluorescence intensity ratio F_{594}/F_{446} .

Fig. S8 (A) Fluorescence emission spectra of dsDNA/T4 PNK/ λ exo/ascorbate/Cu²⁺ reaction system with various concentrations T4 PNK. (B) The linearity of the fluorescence intensity ratio (F/F₀) versus T4 PNK concentration. F and F₀ were the FL intensity of dsDNA/T4 PNK/ λ exo/ascorbate/Cu²⁺ system in the presence and absence of T4 PNK, respectively.

Fig. S9 Fluorescence emission spectra of GQDs-CuNCs and GQDs-CuNCs/cell lysates (10%) system.

Fig. S10 Fluorescence response for detecting T4 PNK activity in pure buffer and diluted cell lysates (10%) respectively.

Material	Linear range	LOD	References
	(U mL ⁻¹)	(U mL ⁻¹)	
Deoxyguanosines/FAM	0.005-10	0.0021	1
Graphene oxide/exonuclease III	0-0.2	0.003	2
Perylene	0-0.08	0.003	3
Allosteric aptamer probe	0-1	0.01	4
FAM/cobalt oxyhydroxide	0.01-1	0.01	5
PFP/SYBR Green I	0.001-5	0.001	6
FAM/polydopamine nanospheres	0.01-2.5	0.01	7
β-cyclodextrin polymer	0-0.25	0.02	8
GQDs-CuNCs	0.01-10	0.0037	This work

Table S1 Comparison of different fluorescence methods for T4 PNK detection.

Notes and references

- M. Tao, Z. Shi, R. Cheng, J. Zhang, B. Li and Y. Jin, *Analytical Biochemistry*, 2015, 485, 18-24.
- 2 N.-N. Sun, R.-M. Kong, F. Qu, X. Zhang, S. Zhang and J. You, *Analyst*, 2015, 140, 1827-1831.
- 3 H. Jiao, B. Wang, J. Chen, D. Liao and C. Yu, *Chemical Communications*, 2012, **48**, 7862-7864.
- 4 M. Gao, J. Guo, Y. Song, Z. Zhu and C. J. Yang, Acs Applied Materials & Interfaces, 2017, 9, 38356-38363.
- 5 Y. Cen, Y. Yang, R.-Q. Yu, T.-T. Chen and X. Chu, Nanoscale, 2016, 8, 8202-8209.
- S. Lian, C. Liu, X. Zhang, H. Wang and Z. Li, *Biosensors & Bioelectronics*, 2015, 66, 316-320.
- 7 Y. Cen, W.-J. Deng, R.-Q. Yu and X. Chu, Talanta, 2018, 180, 271-276.
- 8 C. Song, X. Yang, K. Wang, Q. Wang, J. Liu, J. Huang, L. He, P. Liu, Z. Qing and W. Liu, *Chemical Communications*, 2015, 51, 1815-1818.