Supporting Information

Hierarchically Heterostructured Metal Hydr(oxy)oxides for Efficient Overall Water Splitting

Yang Liu,^{a, b,} † Fengmei Wang,^{a,} † Tofik Ahmed Shifa,^a Jie Li, ^{a, b} Jing Tai,^c Yu Zhang,^a Junwei Chu,^a Xueying Zhan,^a Chongxin Shan *^d and Jun He *^{a, b}

†These authors contributed equally.

a. CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.

b. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

c. Testing and Analysis Center, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

d. School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China.

Fig. S1. a-b) SEM image of a) Ni foam, b) NiMoO₄ rods. c) EDX spectra of NiMoO₄ rods.

Fig. S2. The XRD patterns of NiMoO₄ rods before and after the annealing process at 200 °C.

Fig. S3. The morphology of Ni-W-O/NiMoO₄-2 heterostructure synthesized with 2 mmol $(NH_4)_{10}W_{12}O_{41}$ ·xH₂O.

Fig. S4. The XRD patterns of Ni-W-O/NiMoO₄-2 rods.

Fig. S5. XPS analysis of survey scan (a), Ni 2p (b), Mo 3d (c) and W 2f (d) spectra in the obtained Ni-W-O/NiMoO4-2 heterostructure.

Fig. S6. HRTEM image of the microcubes of Ni-W-O/NiMoO₄-2 heterostructures.

Fig. S7. The morphology of Ni-W-O/NiMoO₄-1.5 heterostructure with the moderate concentration (0.05 mol/L) of precursor.

Fig. S8. The morphology of pure Ni-W-O microcubes on Ni foam.

Fig. S9. XPS survey of the pure NiMoO₄ rods and the pure Ni-W-O microcubes.

Fig. S10. Nyquist plots of NiMoO₄ rods, pure Ni-W-O microcubes and Ni-W-O/NiMoO₄-1 electrodes tested in N_2 saturated KOH electrolyte for HER.

Fig. S11. Nyquist plots of NiMoO₄ rods, Ni₄W₆O₂₁(OH)₂·4H₂O microcubes and Ni-W-O/NiMoO₄-1 electrodes tested in O₂ saturated KOH electrolyte for OER.

Fig. S12. The XRD patterns of Ni-W-O/NiMoO₄-1 heterostructure before and after long-term (3 days) OER test.

Fig. S13. SEM and HRTEM images of the Ni-W-O/NiMoO₄-1 heterostructure after long-term (3 days) OER test.

Fig. S14. XPS analysis of survey scan (a), Ni 2p (b), Mo 3d (c) and O 1s (d) spectra in the Ni-W-O/NiMoO4-1 after long-term (3 days) OER test.

Catalyst	Electrolyte	η ₁₀ (mV) (V vs RHE)	Tafel slope (mA dec ⁻¹)	Ref.
Ni-W-O/NiMoO ₄ -1	1 _M KOH	52	80	This work
NiCo ₂ O ₄	1 _M KOH	110	49.7	1
Ni-Co-P-300	1 _M KOH	150	60.1	2
Ni ₂ P/Ni/NF	1 _M KOH	98	72	3
Ni/NiP	1 _M KOH	130	58.5	4
NiCo ₂ S ₄ NW/NF	1 _M KOH	210	58.9	5
MoP/Ni ₂ P/NF	1 _M KOH	75	100.2	6
Co ₄ Ni ₁ P NTs	1 _M KOH	129	52	7
S-NiFe ₂ O ₄ /NF	1 _M KOH	138	61.3	8
NiCoP	1 _M KOH	62	68.2	9
Co ₄ Mo ₂ @NC	1 _M KOH	218	73.5	10
NiFe-LDH	1 _M KOH	192	59	11
/NiCo ₂ O ₄ /NF nickel sulfides	1 _M KOH	148	79	12
Cu@NiFe LDH	1 _M KOH	116	58.9	13
Ni/Mo ₂ C-PC	1 _M KOH	179	101	14
NiFe LDH-NS@DG10	1 _M KOH	300	110	15

Table S1. Comparison of HER performances for various electrocatalysts in 1.0 M KOH.

Catalyst	Electrolyte	η (mV) (V <i>vs</i> RHE)	Tafel slope (mA dec ⁻¹)	Ref.
Ni-W-O/NiMoO ₄ -1	1 _M KOH	253(y ₃₀)	92	This work
Ni ₃ Se ₂ -Au@Glass	1 _M KOH	320(n ₁₀₎	97.1	16
Ni ₃ Se ₂ -Ni foam	1 _M KOH	270(ŋ10)	142.8	16
NiCo ₂ O ₄	1 _M KOH	340(ŋ ₁₀₎	75	17
porous MoS ₂	1 _M KOH	260(n ₁₀₎	54	18
Ni/NiP	1 _M KOH	270(n ₃₀)	73.2	4
NiCo ₂ S ₄ NW/NF	1 _M KOH	260(ŋ ₁₀₎	40.1	5
MoP/Ni ₂ P/NF	1 _M KOH	300(₁₂₀)	77.6	6
S-NiFe ₂ O ₄ /NF	1 _M KOH	267(y10)	36.7	8
Co4Mo2@NC	1 _M KOH	330(n ₁₀₎	48.7	10
NiFe-LDH /NiCo ₂ O ₄ /NF	1 _M KOH	$290(\eta_{50})$	53	11
nickel sulfides	1 _M KOH	320(n ₁₀₎	59	12
Ni/Mo ₂ C-PC	1 _M KOH	368(n ₁₀₎	-	19

 Table S2. Comparison of OER performances for various electrocatalysts in 1.0 M KOH.

Reference

- (1) Gao, X.; Zhang, H.; Li, Q.; Yu, X.; Hong, Z.; Zhang, X.; Liang, C.; Lin, Z. Angew. Chem. Int. Ed. Engl. 2016, 55, 6290.
- (2) Feng, Y.; Yu, X.-Y.; Paik, U. Chem. Commun. 2016, 52, 1633.
- (3) You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y. ACS Catal. 2016, 6, 714.
- (4) Chen, G.-F.; Ma, T. Y.; Liu, Z.-Q.; Li, N.; Su, Y.-Z.; Davey, K.; Qiao, S.-Z. Adv. Funct. Mater. 2016, 26, 3314.
- (5) Sivanantham, A.; Ganesan, P.; Shanmugam, S. Adv. Funct. Mater. 2016, 26, 4661.
- (6) Du, C.; Shang, M.; Mao, J.; Song, W. J. Mater. Chem. A 2017, 5, 15940.
- (7) Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. *Adv. Funct. Mater.* 2017, 27, 1703455.
 (8) Liu, J.; Zhu, D.; Ling, T.; Vasileff, A.; Qiao, S.-Z. *Nano Energy* 2017, 40, 264.
 (9) Du, C.; Yang, L.; Yang, F.; Cheng, G.; Luo, W. *ACS Catal.* 2017, 7, 4131.

- (10) Jiang, J.; Liu, Q.; Zeng, C.; Ai, L. J. Mater. Chem. A 2017, 5, 16929.
- (10) Stang, J.; End, Q.; Zeng, C.; Al, E. S. Mater. Chem. A 2017, 3, 10929.
 (11) Wang, Z.; Zeng, S.; Liu, W.; Wang, X.; Li, Q.; Zhao, Z.; Geng, F. ACS Appl. Mater. Inter. 2017, 9, 1488.
 (12) Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.; Wang, Y. ACS Appl. Mater. Inter. 2017, 9, 2500.
 (13) Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Yu, F.; Bao, J.; Yu, Y.; Chen, S.; Ren, Z. Energ. Environ. Sci. 2017, 10, 1820.
- (14) Yu, Z. Y.; Duan, Y.; Gao, M. R.; Lang, C. C.; Zheng, Y. R.; Yu, S. H. Chem. Sci. 2017, 8, 968.
- (15) Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M. T.; Hong, M.; Yan, X.; Qian, G.; Zou, J.; Du, A.; Yao, X.
- Adv. Mater. 2017, 29, 1700017.
- (16) Swesi, A. T.; Masud, J.; Nath, M. Energ. Environ. Sci. 2016, 9, 1771.
- (17) Lv, X.; Zhu, Y.; Jiang, H.; Yang, X.; Liu, Y.; Su, Y.; Huang, J.; Yao, Y.; Li, C. Dalton Trans. 2015, 44, 4148.
- (18) Jin, Y.; Wang, H.; Li, J.; Yue, X.; Han, Y.; Shen, P. K.; Cui, Y. Adv. Mater. 2016, 28, 3785.
- (19) Yu, Z.-Y.; Duan, Y.; Gao, M.-R.; Lang, C.-C.; Zheng, Y.-R.; Yu, S.-H. Chem. Sci. 2017, 8, 968.