Supporting Information

Insights into the Thermal and Chemical Stability of Multilayered V₂CT_x MXene Under Different Environments

Raj Thakur[†], Armin VahidMohammadi[‡], Jorge Moncada[†], Reid Adams^{†,} Mingyang Chi[†], Bruce

Tatarchuk[†], Majid Beidaghi[‡]*, Carlos A. Carrero[†]*

† Department of Chemical Engineering, Auburn University, Auburn, Alabama 36830, United States

‡ Department of Material Engineering, Auburn University, Auburn, Alabama 36830, United States

Email-

* Carlos A. Carrero: cac0134@auburn.edu

* Majid Beidaghi: mzb0088@auburn.edu

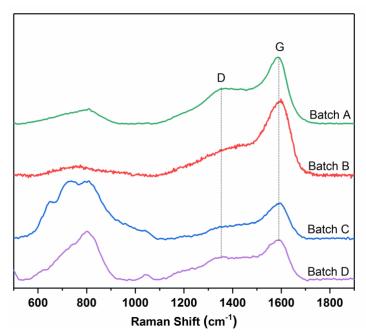
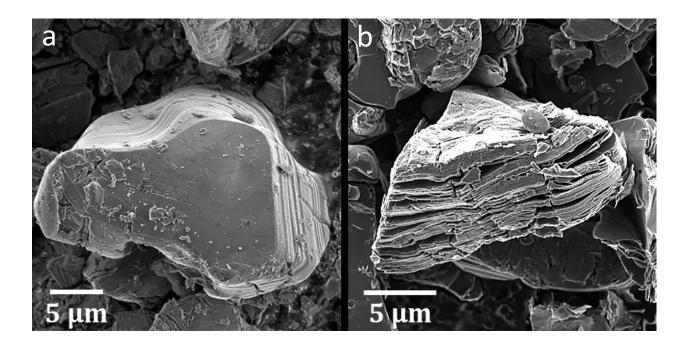
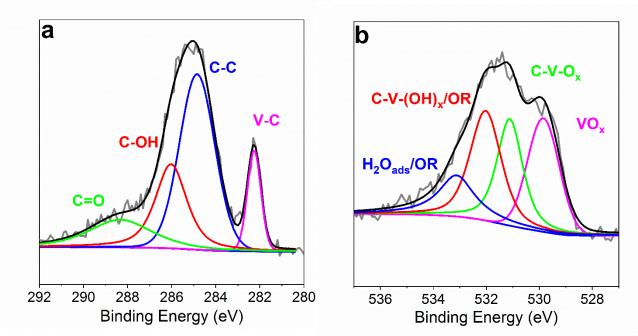
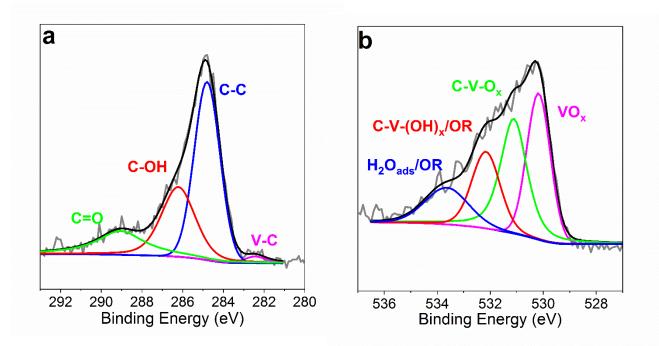
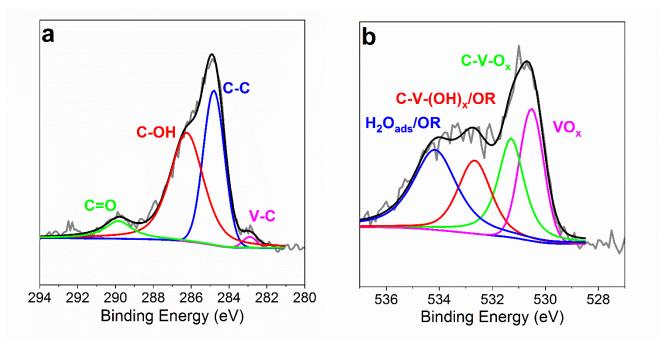
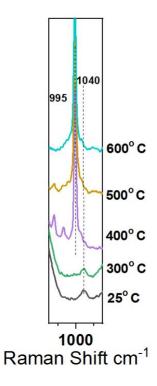


Figure S1. Raman spectra for various batches of $V_2CT_X MX$ ene showing different amount of carbon on the surface. For present study, batch D was selected.


Figure S2. SEM image of (a) V_2AIC MAX phase and (b) V_2CT_x MXene phase.


Figure S3. XPS spectra of (a) C1s region and (b) O1s region for the bare V_2CT_x MXene. Surface charging were corrected using the C1s level at 284.8 eV. OR stands for organic compounds due to atmospheric surface contaminations.¹⁻⁴

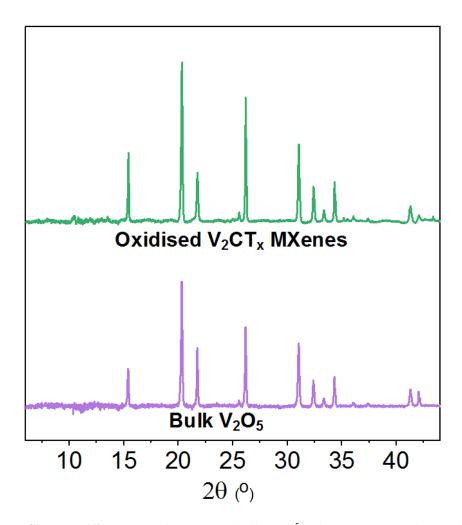

Figure S4. XPS spectra of (a) C1s region and (b) O1s region for the V_2CT_x MXene treated under nitrogen at 600°C Surface charging were corrected using the C1s level at 284.8 eV. OR stands for organic compounds due to atmospheric surface contaminations.¹⁻⁴


Figure S5. XPS spectra of (a) C1s region and (b) O1s region for the V_2CT_x MXene treated under Carbon dioxide at 600°C. Surface charging were corrected using the C1s level at 284.8 eV. OR stands for organic compounds due to atmospheric surface contaminations. ¹⁻⁴

Figure S6. In situ Raman spectra of air treated V_2CT_x MXene. Surface V=O (vanadyl) shift to 995 cm⁻¹ from 1040 cm⁻¹ as a function of temperature.

Figure S7. XRD diffractogram of commercial bulk V_2O_5 ⁵ and V_2CT_x MXene after treating under air.⁶ (JCPDS No. 41-1426).

Figure S8. XPS spectra of (a) C1s region and (b) O1s region for the V_2CT_x MXene treated under air at 600°C. Surface charging were corrected using the C1s level at 284.8 eV. OR stands for organic compounds due to atmospheric surface contaminations. ¹⁻⁴

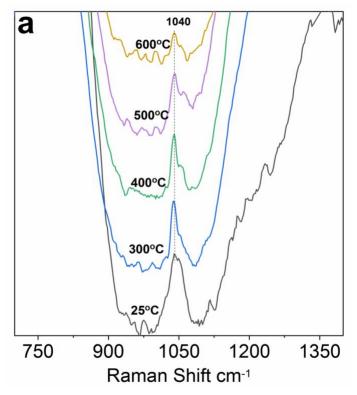


Figure S9. In situ Raman spectra of hydrogen treated V_2CT_x MXene. Surface V=O (vanadyl) as a function of temperature under H₂ environment.

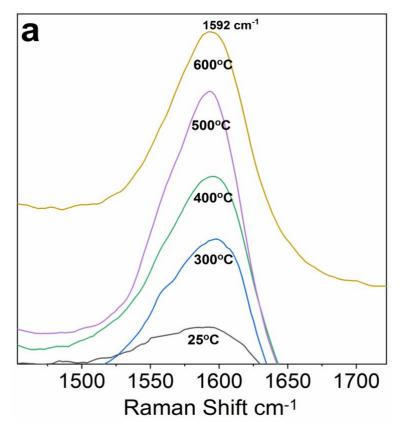


Figure S10. In situ Raman spectra of hydrogen treated V_2CT_x MXene. G carbon signals increase as a function of temperature under H₂ environment.

Figure S11. XPS spectra of (a) C1s region and (b) O1s region for the V_2CT_x MXene treated under hydrogen at 600°C. Surface charging were corrected using the C1s level at 284.8 eV. OR stands for organic compounds due to atmospheric surface contaminations. ¹⁻⁴

References:

1. Didziulis, S. V.; Frantz, P.; Perry, S. S.; El-bjeirami, O.; Imaduddin, S.; Merrill, P. B., Substratedependent reactivity of water on metal carbide surfaces. *The Journal of Physical Chemistry B* **1999**, *103* (50), 11129-11140.

2. Jayaweera, P.; Quah, E.; Idriss, H., Photoreaction of ethanol on TiO2 (110) single-crystal surface. *The Journal of Physical Chemistry C* **2007**, *111* (4), 1764-1769.

3. Beamson, G.; Briggs, D., High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: A comparison between solid state data for organic polymers and gas phase data for small molecules. *Molecular Physics* **1992**, *76* (4), 919-936.

4. Choi, J.-G., The surface properties of vanadium compounds by X-ray photoelectron spectroscopy. *Applied surface science* **1999**, *148* (1-2), 64-72.

5. Fu, H.; Yang, X.; An, X.; Fan, W.; Jiang, X.; Yu, A., Experimental and theoretical studies of V2O5@ TiO2 core-shell hybrid composites with high gas sensing performance towards ammonia. *Sensors and Actuators B: Chemical* **2017**, *252*, 103-115.

6. Wu, M.; Wang, B.; Hu, Q.; Wang, L.; Zhou, A., The Synthesis Process and Thermal Stability of V2C MXene. *Materials* **2018**, *11* (11), 2112.