Micro-CT as a Non-Destructive Tool for Imaging the Uptake of Metal Nanoparticles by Graphene Based 3D Carbon Structures

Christopher T. G. Smith¹, Christopher A. Mills^{1,2}, Silvia Pani³, Rhys Rhodes¹, Josh J. Bailey⁴, Samuel J. Cooper⁵, Tanveerkhan S. Pathan⁴, Vlad Stolojan¹, Paul Shearing⁴ and S. Ravi P. Silva^{1*}

¹ Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK.

² Advanced Coatings Group, Surface Engineering Department, Tata Steel Research Development and Technology, 9 Sir William Lyons Road, Coventry, CV4 7EZ, UK.

³ Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, UK.

⁴ Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE

⁵ Dyson School of Design Engineering, Imperial College London, South Kensington, London, SW7 1NA, UK

*corresponding author: <u>s.silva@surrey.ac.uk</u>

S1 Segmentation Procedure

The segmentation procedure undertaken on the X-ray nano-CT images in **Figure 8** is progressed in the following way:

- 1. Apply a 3D 3x3x3 Gaussian Filter
- 2. Convert the image type from 32-bit to 8-bit
- 3. Crop the volume to exclude bright artefacts outside volume of interest
- 4. Labelling:
 - a. Simple threshold for NPs (bright) and 1 x volume expansion (1 pixel in all directions)
 - b. Simple threshold for C-sponge (light grey) and 3 x volume contraction and expansion
 - c. Watershed segmentation based on seeds detailed above

S2 Analysis

S2.1 Full FOV

Volumes and Areas

VSSA = Volume-specific surface area

- VISA = Volume-specific interfacial area
- Total volume of carbon = 21.3 mm³
- Total volume of NPs = 9.7 mm³

Absolute surface area of carbon $\approx 1880 \text{ mm}^2$

Absolute surface area of NPs $\approx 670 \text{ mm}^2$

VSSA of carbon (/Vol C) $\approx 89 \text{ mm}^{-1}$

VSSA of carbon (/Vol Tot Solids) \approx 61 mm⁻¹

VSSA of NPs (/Vol NP) $\approx 68 \text{ mm}^{-1}$

S2 Analysis cont.:

VSSA of NPs (/Vol Tot Solids) $\approx 21 \text{ mm}^{-1}$ Absolute interfacial area C-NPs $\approx 320 \text{ mm}^{-2}$

VISA C-NPs ≈ 10 mm⁻¹

Conclusions:

Volume of carbon $\approx 2.2 \text{ x Volume of NP}$

Surface area of carbon $\approx 2.8 \text{ x}$ Surface area of NP

VSSA (/C) of carbon $\approx 1.3 \times VSSA$ (/NP) of NP

VSSA (/Tot) of carbon ≈ 2.9 x VSSA (/Tot Solids) of NP

VSIA (/Tot) of carbon-NP) $\approx 1/6$ of total VSSA of carbon (/Tot) (10 / 61)

S2.2 Sub-volume Porosity estimation

Extracted sub-volume with dimensions: $376 \times 306 \times 180$ Volume of extracted sub-volume $1 = 2.50 \text{ mm}^3$ Estimated porosity = 70 % Volume of extracted sub-volume $2 = 1.38 \text{ mm}^3$ Estimated porosity = 77 % Volume of extracted sub-volume $3 = 1.03 \text{ mm}^3$ Estimated porosity = 73 % Average percentage porosity = (70 + 77 + 73) / 3 = 73 %Porosity range = 70 - 77 % Std. deviation = 2.9 % **Conclusion:** Estimated porosity of carbon sponge = $\underline{73 \pm 3 \% (1 \text{ s.d. of error})}$