Microlens Array Enhanced Upconversion Luminescence at Low

Excitation Irradiance

Qingyun Liu,^{a,b} Haichun Liu,^{*a} Deyang Li,^b Wen Qiao,^c Guanying Chen,^{*b} Hans Ågren^{*a,b,d}

^a Department of Theoretical chemistry and Biology, KTH Royal Institute of Technology, Stockholm, Sweden.

^b School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, P.R. China.

^c School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, P.R. China

^d College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P.R. China

*Corresponding authors:

*E-mail: hagren@kth.se (Hans Ågren); chenguanying@hit.edu.cn (Guanying Chen); haichun@kth.se

(Haichun Liu)

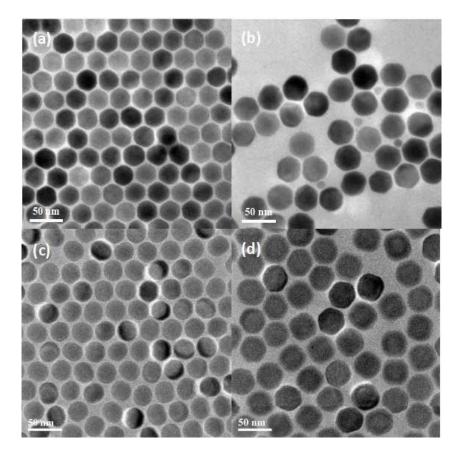


Figure S1 TEM images of (a) core NaYF4:20% Yb3+,2%Er3+, (b) core-shell NaYF4:20% Yb3+,2%Er3+@20% Yb3+,30% Nd3+, (c) core NaYF4:20% Yb3+,0.5% Tm3+, (d) core-shell NaYF4:20% Yb3+,0.5% Tm3+@20% Yb3+,30% Nd3+ nanoparticles. Scale bars: 50 nm.

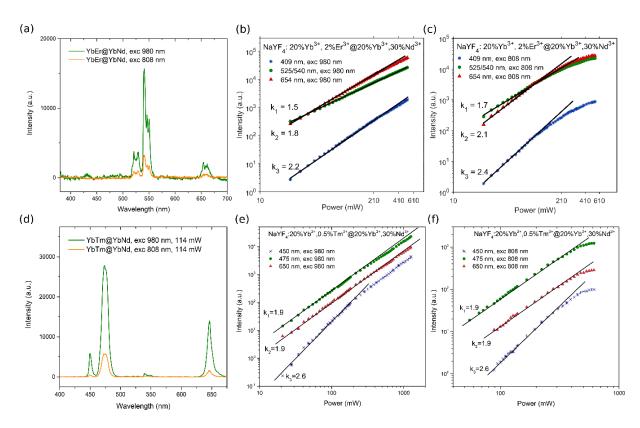


Figure S2 (a) Upconversion emission spectra of NaYF₄:20%Yb³⁺, 2%Er³⁺@20%Yb³⁺,30%Nd³⁺ nanoparticles under CW 980 nm and 808 nm excitation. Excitation power density for both lasers was 1.3 W/cm². Excitation power-density response of NaYF₄:20% Yb³⁺, 2%Er³⁺@20% Yb³⁺,30%Nd³⁺ under (b) CW 980 nm excitation and CW (c) 808 excitation. (d) Upconversion emission spectra of NaYF4:20% Yb³⁺, nm 0.5% Tm³⁺@20% Yb³⁺,30% Nd³⁺ nanoparticles under CW 980 nm and 808 nm excitation. Excitation power density W/cm². for both lasers was 14.5 Excitation power-density response of NaYF₄:20%Yb³⁺, 0.5%Tm³⁺@20%Yb³⁺,30%Nd³⁺ under (e) CW 980 nm excitation and (f) CW 808 nm excitation. Laser beam diameter for both lasers: ~1.0 mm.

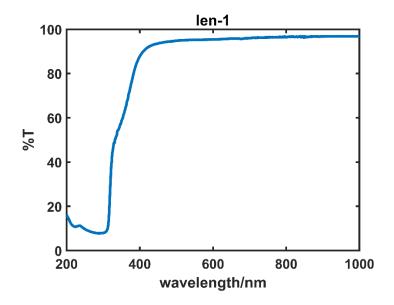
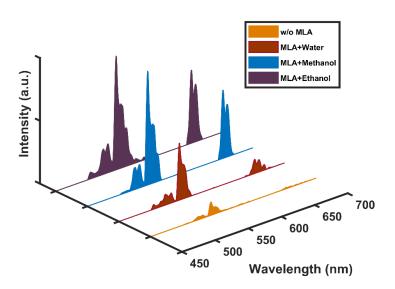



Figure S3 Transmission spectrum of the microlens array

Figure S4 Upconversion luminescence spectra of NaYF₄:20%Yb³⁺,2%Er³⁺@20%Yb³⁺,30%Nd³⁺ nanoparticles under 980 nm CW excitation (Average excitation intensity: 3.9 W/cm²) without and with the addition of microlens array (MLA), using different solvents as the interface medium (ethanol, water, methanol).