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Figures

Figure S1. Representative Raman spectra of the embedded graphene micro-ribbons collected 

at different strain levels. It is highlighted the representative graphene G, 2D and D band 

regions and the PMMA band region with the characteristic peaks. In all the cases no D peak 

is observed. The solid lines represent Lorentzian fits to the G and 2D peak.



Figure S2. 2D peak position for spectra acquired far away from the edge as a function of 

applied strain during the 2nd loading. Two regions are marked: i) an almost flat region 

corresponding to the unfolding of the pre-existing wrinkles of the inclusion with, ii) linear 

region where graphene experiences axial tensile load.



Stress dependence on graphene’s Raman spectrum

It is well known that phenomena like overtones, combination bands, bond breaking at high 

deformation levels cannot be explained with the harmonic vibrator theory and demands a 

different approximation to the potential energy. Such an approximation is the Morse potential 

function that is presenting in the following equation:

𝑈 = 𝐷𝑒(1 ‒ 𝑒
‒ 𝑏(𝑥 ‒ 𝑥0)

)2             (22)

Where De is the dissociation energy and b is a constant.

In Figure S3, the potential energy of both the anharmonic and harmonic oscillator is 

presented with the allowable energy levels. The dotted lines represent the allowable energy 

levels. 

Figure S3. The potential energy function for the Harmonic and the Anharmonic Oscillator as a 

function with the interatomic distance with the allowable energy levels. 



The second derivative from potential energy provides the force constant in both cases. More 

detailed, in the harmonic oscillator the force constant is stable and equal to K but in the 

anharmonic oscillator the force constant is given from the following equation:

𝐾 =  2𝑏2𝐷𝑒(2𝑒
‒ 2𝑏(𝑥 ‒ 𝑥0)

‒ 𝑒
‒ 𝑏(𝑥 ‒ 𝑥0))             (23)

In figure S4, the force constant for anharmonic and harmonic oscillator is presented. It can be 

easily seen that the force constant is no more constant in the anharmonic case and it is a 

function of the intermolecular distance. More detailed, when the bond is stressed, Δx > 0 the 

force constant is decreasing. This results in a low frequency shift Δv of the vibration. On the 

other hand, when the bond is compressed, x < 0, the force constant increasing resulting a high 

frequency shift. For small deformations (positions near the equilibrium), Δv ~ . The above  𝐾

principle provides the theoretical background for the frequency shift of distinct Raman bands 

when the molecule is subjected to external load.

Figure S4. The variation of the force constant as a function of interatomic distance for harmonic 

and anharmonic oscillator cases.



Monitoring stress transfer processes using micro Raman spectroscopy

Raman spectroscopy provides a unique insight into the relationship between macroscopic 

deformation and the processes that occur at the molecular or microstructural level and has 

now revolutionized common understanding of the micromechanics of inclusions in composite 

materials. It has been found that the frequencies or wavenumbers of the Raman bands of 

many high-performance fibres (e.g. Kevlar) and carbon-based materials shift on the 

application of an external mechanical loading. This behaviour has been ascribed to the 

macroscopic deformation being transformed directly into stressing of the covalent bonds and 

changes in the bond angles1. As a consequence of the anharmonicity of atomic bond, when an 

external loading is applied to a material, the interatomic distance changes thus resulting in a 

variation of the interatomic force and of vibrational frequency (or, analogously, in 

wavenumber). Based on this approach, Galiotis et al. used for the first time the inclusion of a 

composite as a ‘mechanical probe’ for a polydiacetylene/epoxy composite2. Basically, this 

approach consists in monitoring in situ the Raman vibrational frequencies shift with applied 

stress or strain for the matrix-embedded inclusion and to compare this dependence with a 

universal calibration curve established between the rate of shift of a specific Raman bands of 

the inclusion with applied strain. In the same way, the point-to-point mapping along inclusion 

axis enables stress transfer from the polymer to the inclusion to be followed. 



Mathematical formulation for the stress transfer of a nanoflake such as graphene 

simply supported or embedded into a polymer matrix.

Figure S5 Geometry of the shear lag model in (a) fully embedded and (b) simply supported 

graphene flake on a polymeric bar. Axial and shear stresses in representative elements of the 

flake are also shown.

The shear-lag formulation presented here is a modification of the treatment proposed by Cox3 

for a composite that incorporates say a rectangular graphene monolayer of length, l, width, w, 

and of thickness, tg, which is either simply supported or embedded into a solid polymer 

matrix.  The fundamental material assumptions of the model are that the inclusion (flake, 

platelet, fibre etc) is surrounded by a matrix (or even bounded by a matrix on the one side), 

that there is a reasonable adhesion exists between the inclusion and the matrix and that both 

inclusion and matrix behave elastically. Finally, no load transfer across the ends of the 



inclusion (normal to the cross-section) is permitted in this model.  If the whole matrix is 

subjected to a strain ε in the direction of the flake, the rate of load, P, from matrix to the 

flake, will depend on the magnitude of the relative displacement of the two bodies i.e. the 

reinforcing flake at ux (the distance x is measured from the end) and the far-field 

displacement of the matrix ux,∞ at the same point.  In other words: 
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where H is  a proportionality constant and  σx is the axial stress in the flake. In the linear 

elastic regime, σx, is given by: 
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whereas the far field (matrix) strain, ε, is given by:
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By differentiating equation (2) with respect to x and by substituting equations (1) and (3) we 

finally get:
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The solution of the above differential equation yields:
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where R, S and β are constants. By considering the boundary conditions:
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Equation (6) is finally transformed to:
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is the shear-lag parameter which depends on the material properties and the geometrical 

foundation of the problem and H the proportionality constant. The parameter β has units of 

inverse length and is evidently related to the transfer length required for efficient transfer of 

stress to the flake. A simplified version of equation (8) using trigonometric identities is:

   (10)( ) 1 cosh( ) tanh sinh( )
2x x
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Now we turn our attention to the expression .  Since β=1/lo and then 
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transfer it follows that we need l>>2lt.  Hence the expression yields to 0.92 in the 
tanh (𝛽𝑙

2 )  

limiting case of l=2lt for any higher values of l it becomes a unity and can be ignored.



Since as mentioned above is 1/l the half-lengths of graphene flakes employed here are in the 

range of ~10 μm then any value of β>1.0 μm-1 (which is our case here) will satisfy this. 

Based on the above, equation (10) now becomes:
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where, is the far-field stress of the flake. In terms of strain values, the above equation ,x 

can be written as:

                                                                                  (12) ( ) 1 exp( )x x x     

The significance of equations (11) and (12) is that the stress or strain distributions in the 

elastic region can be adequately predicted by just treating β as an inverse length fitting 

parameter which is a related to the physics of the stress transfer problem and represents a 

normalization factor to the length of the inclusion that permits full stress transfer.  

In order to estimate the value of H, we consider the balance of shear to axial forces (Figure 

S5) in the flake which yields:
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where τt is the shear stress at the surface of the flake . The shear strain γ at the interface 

should be given by: 



         (15)x z
xz

u u
z x

  
 

 

It is reasonably to  assume [4] that :
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then equation (15)  gives:
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where Gm,z  is the shear modulus of the matrix at distance z and τzx is the shear stress at any 

given distance z from the surface of the flake for which there is no influence of the inclusion. 

By considering the balance of shear forces, τt, at distance z and those at the flake surface, τt , 

over the width of the flake it is easy to show that: 

         (18)zx t 

Equation (17) can be integrated at the limits of the flake surface (t/2) for which ux = ux,t and of 

the matrix element (T/2) for which ux = ux,T :
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where Gm,T  is the shear modulus of the matrix at a distance T (fig. S6). Hence solving as for 

H from equations (2), (13) or (14) and (19)  (assuming as mentioned earlier  and T , ,x T xu u 

>> tg), we obtain: 
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Equation (20) represents H, the proportionality constant, as the shear modulus of the 

‘interphase’ normalized by its own thickness (T/2) and multiplied by the width of the flake. In 

order now to establish the inverse length parameter for all graphene nanocomposites we set t 

= ntg where n is the number of layers and tg = 0.335, the thickness of the monolayer. In our 

case, from equations (9) and (20) we obtain:

(21)

GRAPHENE GRAPHENE
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                               

14 2 43 14 2 43
14 2 43 14 2 43

The first term of equations (21) refer to the ‘interphase’, through which the stresses are 

transferred to graphene, and the second to the material parameters of the nanoflake. The 

above expression for β agrees well with similar expressions derived by Kotha et al4 for 

composites reinforced with mineral platelets.
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