Electronic Supplementary Information

Monolayer triphosphates MP₃ (M=Sn, Ge) with excellent basal catalytic activity for hydrogen evolution reaction

Hong-Hui Wu[‡], He Huang[§], Jie Zhong[‡], Song Yu[♥], Qiaobao Zhang[†]*, Xiao Cheng Zeng [‡]*

- [†] Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China.
- [‡]Department of Chemistry, University of Nebraska-Lincoln, NE 8588 Lincoln, United States
- § Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

^v Department of Physics and Materials, East China Normal University, Shanghai 200241, China

Figure S1. Top and side view of the optimized structural $4 \times 4 \times 1$ supercell of (a) GeP₃ monolayer, (b) SnP₃ monolayer, (c) GeP₃@graphene, (d) SnP₃@graphene.

Ge (Sn)-P	P-P	P-H	thickness	layer distance
2.508	2.175	1.432	2.421	/
2.712	2.168	1.434	2.875	/
2.566	2.211	1.435	5.239	3.208
2.731	2.184	1.435	5.921	3.338
	Ge (Sn)-P 2.508 2.712 2.566 2.731	Ge (Sn)-P P-P 2.508 2.175 2.712 2.168 2.566 2.211 2.731 2.184	Ge (Sn)-P P-P P-H 2.508 2.175 1.432 2.712 2.168 1.434 2.566 2.211 1.435 2.731 2.184 1.435	Ge (Sn)-P P-P P-H thickness 2.508 2.175 1.432 2.421 2.712 2.168 1.434 2.875 2.566 2.211 1.435 5.239 2.731 2.184 1.435 5.921

Table S1 Computed bond length, monolayer thickness and layer distance for GeP_3 and SnP_3

System	$E_{a}(eV)$	d (Å)	Bader charge of hydrogen atom	ΔQ (e)
GeP ₃	-0.386	1.431	1.319	0.319
GeP ₃ @graphene	-0.389	1.434	1.351	0.351
SnP ₃	-0.137	1.433	1.312	0.312
SnP ₃ @graphene	-0.185	1.434	1.379	0.379

Table S2. Computed adsorption energy (E_a), adsorption distance (d), charge transfer (ΔQ) of the atoms around the adsorption site

Figure S2. Density of states computed based on the PBE functional for (a) GeP₃ monolayer, (b) SnP₃ monolayer, (c) GeP₃@graphene heterobilayer, and (d) SnP₃@graphene heterobilayer.

Figure S3. Effect of biaxial strain (a) -0.02, (b) -0.01, (c) 0.01, (d) 0.02 on the density of states of GeP_3 monolayer, based on HSE06 computation.

Figure S4. Effect of biaxial strain (a) -0.02, (b) -0.01, (c) 0.01, (d) 0.02 on the density of states of SnP_3 monolayer, based on HSE06 computation.

Figure S5. Ab initio MD simulation results of the $6 \times 6 \times 1$ GeP₃ monolayer supercell with 32 water molecules at the simulation time (a1)-(a2) 0 fs, (b1)-(b2) 1000 fs, (c1)-(c2) 3000 fs, (d1)-(d2) 6000 fs from top and side view, respectively. The temperature is controlled at 300 K.

Figure S6. Ab initio MD simulation results of the $6 \times 6 \times 1$ SnP₃ monolayer supercell with 32 water molecules at the simulation time (a1)-(a2) 0 fs, (b1)-(b2) 1000 fs, (c1)-(c2) 3000 fs, (d1)-(d2) 6000 fs from top and side view, respectively. The temperature is controlled at 300 K.