Supplemental Materials: Surface passivated and encapsulated ZnO atomic layer by high- κ ultrathin MgO layer

Chinedu E. Ekuma,^{*,†} Sina Najmaei,[‡] and Madan Dubey[‡]

†Department of Physics, Lehigh University, Bethlehem, PA 18015 ‡Sensors and Electron Devices Directorate, United States Army Research Laboratory, Adelphi, MD 20783

E-mail: che218@lehigh.edu

Figure 1: Electronic structure of vdW heterostructures. Partial density of states of Zn, O, and Mg. Note, the O atoms from ZnO and MgO have been plotted together. However, over 98% of the contributions of O to the vdW materials are from ZnO. The top panel is for MgO/ZnO while the bottom panel is for MgO/ZnO/MgO. Black, red, and green lines in the plots correspond to s, p, and d orbitals, respectively.

Figure 2: Electronic band levels of ZnO-based vdW heterostructures. Electrostatic potential profile along the *z*-direction of the crystallographic plane. For MgO/ZnO vdW heterostructure, the charge transfer across the heterojunction needs to overcome an energy barrier of $5.90 \pm 0.02 \text{ eV}$, and a transfer distance of $3.72 \pm 0.02 \text{ Å}$. For MgO/ZnO/MgO, the charge transfer across the heterointerface needs to overcome an energy barrier of 4.84 ± 0.02 ($5.99 \pm 0.02 \text{ eV}$) and a transfer distance of 3.59 ± 0.02 ($3.72 \pm 0.02 \text{ Å}$) for the top (bottom) interfaces. *d* is a typical transfer distance.

Below we present the crystal information in the primitive cell; the Crystallographic Information

File format is used.

MgO passivated ZnO - MgO/ZnO crystal structure

data_global loop_ _publ_author_name 'C.E. Ekuma S. Najmaei, and M. Dubey' _journal_name_full 'XXXXXX' _journal_volume XXXXXXX _journal_year 2019

```
_journal_page_first XXX
_journal_page_last XXX
_publ_section_title
;
                                        '221MgOZnO
_chemical_name_common
                                        6.60000
_cell_length_a
                                        6.60000
_cell_length_b
                                        25.00000
_cell_length_c
_cell_angle_alpha
                                        90
_cell_angle_beta
                                        90
_cell_angle_gamma
                                        60.00000
                                        'P 1'
_space_group_name_H-M_alt
_space_group_IT_number
                                        1
```

,

loop_

_space_group_symop_operation_xyz
'x, y, z'

loop_

_atom_site_label

_atom_site_occupancy

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_adp_type

_atom_site_B_iso_or_equiv

_atom_site_type_symbol

Mg1	1.0	-0.000000	0.000000	0.093872	Biso	1.000000 Mg
Mg2	1.0	0.00000	0.500000	0.093872	Biso	1.000000 Mg
Mg3	1.0	0.500000	-0.000000	0.093872	Biso	1.000000 Mg
Mg4	1.0	0.500000	0.500000	0.093872	Biso	1.000000 Mg
01	1.0	0.166667	0.166667	0.093463	Biso	1.000000 0
02	1.0	0.166667	0.666667	0.093463	Biso	1.000000 0
03	1.0	0.666667	0.166667	0.093463	Biso	1.000000 0
04	1.0	0.666667	0.666667	0.093463	Biso	1.000000 0
05	1.0	0.166667	0.166667	0.238178	Biso	1.000000 0
06	1.0	0.166667	0.666667	0.238178	Biso	1.000000 0
07	1.0	0.666667	0.166667	0.238178	Biso	1.000000 0
08	1.0	0.666667	0.666667	0.238178	Biso	1.000000 0
Zn1	1.0	-0.000000	0.000000	0.237235	Biso	1.000000 Zn
Zn2	1.0	0.000000	0.500000	0.237235	Biso	1.000000 Zn
Zn3	1.0	0.500000	-0.000000	0.237235	Biso	1.000000 Zn
Zn4	1.0	0.500000	0.500000	0.237235	Biso	1.000000 Zn

MgO encapsulated ZnO - MgO/ZnO/MgO crystal structure

```
data_global
loop_
_publ_author_name
'C.E. Ekuma S. Najmaei, and M. Dubey'
_journal_name_full 'XXXXXX'
_journal_volume XXXXXXX
_journal_year 2019
_journal_page_first XXX
_journal_page_last XXX
_publ_section_title
;
                                        '221MgOZnOMgO
_chemical_name_common
_cell_length_a
                                        6.60000
_cell_length_b
                                        6.60000
_cell_length_c
                                        25.00000
_cell_angle_alpha
                                        90
_cell_angle_beta
                                        90
_cell_angle_gamma
                                        60.00000
_space_group_name_H-M_alt
                                        'P 1'
_space_group_IT_number
                                        1
```

loop_

_space_group_symop_operation_xyz

'x, y, z'

loop_

,

_atom_site_label

_atom_site_occupancy

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_adp_type

_atom_site_B_iso_or_equiv

_atom_site_type_symbol

Mg1	1.0	0.000000	0.000000	0.085472	Biso	1.000000	Mg
Mg2	1.0	0.000000	0.500000	0.085472	Biso	1.000000	Mg
Mg3	1.0	0.500000	0.000000	0.085472	Biso	1.000000	Mg
Mg4	1.0	0.500000	0.500000	0.085472	Biso	1.000000	Mg
Mg5	1.0	0.000000	0.000000	0.372622	Biso	1.000000	Mg
Mg6	1.0	0.000000	0.500000	0.372622	Biso	1.000000	Mg
Mg7	1.0	0.500000	0.000000	0.372622	Biso	1.000000	Mg
Mg8	1.0	0.500000	0.500000	0.372622	Biso	1.000000	Mg
01	1.0	0.166667	0.166667	0.085052	Biso	1.000000	0
02	1.0	0.166667	0.666667	0.085052	Biso	1.000000	0
03	1.0	0.666667	0.166667	0.085052	Biso	1.000000	0
04	1.0	0.666667	0.666667	0.085052	Biso	1.000000	0
05	1.0	0.166667	0.166667	0.229047	Biso	1.000000	0
06	1.0	0.166667	0.666667	0.229047	Biso	1.000000	0
07	1.0	0.666667	0.166667	0.229047	Biso	1.000000	0
08	1.0	0.666667	0.666667	0.229047	Biso	1.000000	0
09	1.0	0.166667	0.166667	0.373042	Biso	1.000000	0
010	1.0	0.166667	0.666667	0.373042	Biso	1.000000	0
011	1.0	0.666667	0.166667	0.373042	Biso	1.000000	0

012	1.0	0.666667	0.666667	0.373042	Biso	1.000000 0
Zn1	1.0	-0.000000	0.000000	0.229047	Biso	1.000000 Zn
Zn2	1.0	0.000000	0.500000	0.229047	Biso	1.000000 Zn
Zn3	1.0	0.500000	0.000000	0.229047	Biso	1.000000 Zn
Zn4	1.0	0.500000	0.500000	0.229047	Biso	1.000000 Zn

Acknowledgment

This work was supported by the Lehigh University Start-up fund to CEE and the U.S. Army Research Laboratory. Supercomputer support is provided by the DOD High-Performance Computing Modernization Program at the Army Engineer Research and Development Center, Vicksburg, MS.