Supplementary Information

Tunable Valley splitting and Anomalous Valley Hall Effect in Holedoped WS₂ by Proximity Coupling with Ferromagnetic MnO₂ monolayer

Baozeng Zhou^{1,*}, Zheng Li¹, Jiaming Wang¹, Xuechen Niu¹, Chongbiao Luan²

¹Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electrical and

Electronic Engineering, Tianjin University of Technology, Tianjin 300384, China

²Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999,

China

^{*}Author to whom all correspondence should be addressed.

E-mail: <u>baozeng@tju.edu.cn</u>

Table S1. The calculated lattice constant *a*, interfacial distance *d* (Å), binding energy E_b (eV), magnetic moments M (μ_B) of WS₂ and MnO₂ layers, and valley splitting ($\Delta_{KK'}$) of the heterostructures with different stacking configurations.

	Fcc-I	Fcc-II	Hcp-I	Hcp-II	Top-I	Top-II
<i>a</i> (Å)	3.08	3.09	3.06	3.06	3.09	3.07
d (Å)	2.74	2.71	2.77	2.76	3.19	3.24
$E_{\rm b}({\rm eV})$	-1.26	-1.35	-1.26	-1.28	-1.20	-1.21
$M(WS_2)$	0.058	0.065	0.055	0.055	0.023	0.025
M (MnO ₂)	3.023	3.031	3.016	3.014	3.007	3.011
$\Delta_{\mathrm{KK}'}$	17	43	35	39	21	15

Fig. S1. Calculated band structure of pristine 2D MnO_2 by HSE06 method. The Fermi levels are set to zero.

Fig. S2. Top and side views of WS_2/MnO_2 heterostructures with various stacking configurations.

Fig. S3. Phonon bands of WS_2/MnO_2 heterostructure with fcc-II stacking model.

Fig. S4. Calculated band structures of the six configurations of WS_2/MnO_2 heterostructures. The spin projections for the WS_2 along *z* direction are represented by red and blue lines, which represent the spin-up and spin-down states, respectively. The Fermi level is set to zero.

Fig. S5. Calculated band structures of fcc-II stacking WS_2/MnO_2 with various inplane biaxial strain.