Multifunctional Biomimetic Nanoparticles Loading Baicalin for Polarizing Tumor-associated Macrophages

Shulan Han^{a,b}, Wenjie Wang^a, Shengfang Wang^a, Shuo Wang^b, Ruijun Ju^c, Zihao Pan^c, Tingyuan Yang^b, Guifeng Zhang^b, Huimei Wang^{a*}, Lianyan Wang^{b*}

- ^a Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University. Harbin 150040, P. R. China
- ^b Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- ^c Beijing Institute of Petrochemical Technology, Beijing 102617, P.R. China
- * Corresponding author.

Address correspondence to: <u>whm0709@163.com</u>

wanglianyan@ipe.ac.cn (L.-Y. Wang)

Tel/Fax: 0451-82192123 8610-82544931

Supporting information

Figure S1 Drug loading of baicalin (A) and $Hgp100_{25-33}$ antigenic peptide (B) in biomimetic nanoparticles were detected by HPLC.

Figure S2 Characterization of NPs@RBC. SDS-PAGE of NPs@RBC and NPs@RBC-Gala along with PLGA-NPs, natural RBCs and RBC-Gala.

Figure S3 Competitive uptake of M1-like and M2-like macrophage cells. The Nps@RBC-Gala of uptake by M1-like macrophages (A) and M2-like macrophage cells (B) were analyzed by confocal microscopy. The Nps@RBC-Gala of uptake by M1-like macrophages and M2-like macrophage cells (C) were analyzed by flow cytometry. The activation of M1-like cells (F4/80⁺/CD86⁺ cells) by Nps@RBC-Gala (D).

Figure S4 The distributions of nanoparticles *in vivo*. *In vivo* imaging of B@NPs, Hgp/B@NPs, Hgp/B@NPs-CpG, and NPs@RBC using a live imaging system.

Figure S5 TAM phenotype sorting in tumor tissues was tested by flow cytometry. F4/80⁺ CD86⁺ M1-type TAMs (A), F4/80⁺ MHCII⁺ TAM1s (B) and F4/80⁺ CD206⁺ (C) M2-type TAMs were sorted at the end of treatment.

Figure S6 The infiltration of Th1 (CD3e⁺ CD4⁺) and CD8⁺ CTL (CD3e⁺ CD8⁺) cells in tumor tissue was examined via flow cytometry. $CD3e^+$ CD4⁺ cells were identified as Th1 cells (A) and CD3e⁺ CD8⁺ cells were identified as CTL cells (B) in the tumor tissue.

Figure S7 Different formulations successfully increased the infiltrations of T cells in the B16 tumor-bearing mice. The activation of Th1 cells (CD4⁺ T) (A) and cytotoxic T cells (CD8⁺ T) (B) in tumors were examined via immunofluorescent staining. Blue: nucleus, Red: CD4⁺ cells and CD8⁺ cells, Green: IFN- γ .

Figure S8. Hgp 100_{25-33} and TRP $1_{113-126}$ were delivery by macrophages to activate CD4⁺ and CD8⁺ T cells *in vitro*.

Figure S9. The body weight of tumor-bearing mice.