Supplementary information to:

Regulating the Electron Density of Dual Transition Metal Sulfides Heterostructures for Highly Efficient Hydrogen Evolution in Alkaline Electrolytes

Miao Yang,^{a,b} Yimin Jiang,^a Shu Liu,^a Mengjie Zhang,^a Qifei Guo,^a Shen Wei,^a Rongxing He,^{*a} Wei Su^{*b} and

Ming Li*

^a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China E-mail: herx@swu.edu.cn; liming@swu.edu.cn.

^b Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Guangxi Teachers Education University, Nanning 530001, China

E-mail: suwmail@163.com

Experimental Section

Materials and chemicals

NF was purchased from Shenzhen Green and Creative Environmental Science and Technology Co., Ltd. (Shenzhen, China). Hydrochloric acid (HCl), ethanol, carbon disulfide (CS₂), and potassium hydroxide (KOH) were bought from Chongqing Chuandong Chemical Co., Ltd. (Chengdu, China). Ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O) and thiourea (CH₄N₂S) were purchased from Aladdin Co,. Ltd. (shanghai, China). Ammonium fluoride (NH₄F) was obtained from Greagent Co,. Ltd. (shanghai, China). All reagents were used as received without any purification. Double distilled water (18.25 MΩ) was used throughout the experiments.

Preparation of NiMoO₄·xH₂O-NF precursor

NiMoO₄·xH₂O-NF precursors were first synthesized through hydrothermal treatment with a modification.¹ A piece of commercial NF (2 cm \times 3 cm) was washed ultrasonically in 3 M HCl solution, ethanol and DI water alternately for several minutes. In a typical synthetic procedure, 0.01 g NH₄F and 0.155 g (NH₄)₆Mo₇O₂₄·4H₂O were dissolved in 5 mL ultrapure water and 10 mL absolute alcohol under stirring at room temperature to form a uniform solution. Afterward, cleaned NF was placed in the uniform solution. Subsequently, the mixtures with a piece of as-treated NF were transferred into a Teflon-lined stainless steel autoclave (25 mL). Then autoclave was sealed and maintained at 150 °C for 8 h. After reactions

the products were washed with water and ethanol several times, and then dried to obtain NiMoO₄·xH₂O nanorods arrays on NF as precursor.

Preparation of hierarchical N-NiS/MoS₂-NF heterostructures

The NiMoO₄·xH₂O-NF precursor was placed at the center of a tube furnace. Thiourea power was put in another porcelain boat at the upstream side of the precursor. Subsequently, the furnace was increased to 500 °C under flowing inert atmosphere for 2 h. Then the furnace programmatically cooled to room temperature. The as-obtained sample was collected and washed with carbon disulfide and ethanol several times and then dried at 60 °C. The resulting product was denoted as N-NiS/MoS₂-NF.

Preparation of NiS₂/MoS₂-NF

The preparation of NiS_2/MoS_2 -NF 3D electrode are similar to that of the N-NiS/MoS_2-NF electrode except for replacing with S power as reactants.

Preparation of Pt/C-NF electrode

10 mg commercial Pt/C (20 wt.%) and 50 μ L Nafion solution (5 wt.%) were dispersed in water/ethanol solvent (500 μ L distilled water and 450 μ L ethanol) by 30 min sonication to form an ink. Then 200 μ L catalyst ink was uniformly drop-cast onto the 1x1 cm² Ni foam and air-dried at room temperature.

Materials Characterization

X-ray diffraction (XRD) patterns were recorded on a X'Pert Pro MPD, Holland. The morphologies of the materials were characterized using field-emission scanning electron microscopy (FESEM), JEOL-7800F, Japan. High-resolution transmission electron microscopy (HR-TEM) images were recorded at FEI, TFI220, USA. The surface properties of the samples were investigated using X-ray photoelectron spectroscopy (XPS), Thermo ESCALAB 250XI, USA. The Raman of sample was characterized by Renishaw Invia, England.

Electrochemical Measurements

All electrochemical performance were tested in a typical three-electrode configuration on an electrochemical workstation (CHI 660E, CH Instruments, Inc., Shanghai, China). The as-obtained N-NiS/MoS₂-NF was directly used as working electrode. Graphite rod and saturated calomel electrode (SCE) were used as counter and reference electrodes, respectively. All the potentials were calibrated to a reversible hydrogen electrode (RHE) with *iR* compensation. The HER polarization curves were obtained by linear sweep voltammetry (LSV) at a scan rate of 5 mV s⁻¹ in 1 M KOH. The electrochemical impedance spectroscopy (EIS) measurements were performed using an AC voltage with 5 mV amplitude in a frequency range from 100 kHz to 10 mHz under 1 M KOH solution. To estimate the electrochemically active surface area (ECSA) of the samples, cyclic voltammetry was applied to probe the electrochemical double-layer capacitance (C_{dl}) at non-faradaic potentials in 1.0 M KOH at different scan rates.

Theoretical basis

Density function theory (DFT) calculations were performed using Dmol³ code as implemented in the Materials Studios package of Accelrys.^{2,3} The electron exchangecorrelation potential was conducted by the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional.⁴ The semi-core pseudo potentials (DSPPs) combined with double numerical plus polarization (DNP) basis set were chosen for all of calculations.⁵ The convergence tolerances were set to 1.0×10⁻⁵ hartree for energy change, 2.0×10^{-3} hartree Å⁻¹ for maximum force, and 5.0×10^{-3} Å for maximum displacement. The smearing was set to 0.005. The DFT correction (DFT-D) was used to treat the van der Waals interactions by TS method.⁶ The Brillouin zone integration was sampled with the $5 \times 5 \times 1$ k-point. The surface was simulated with a single-layer-thick p (3×3) plane slab with ~ 15 Å vacuum.⁷ Adsorption energy was calculated by subtracting the energies of gas phase species and clean surface from the total energy of the absorbed system: $E_{ads} = E_{adsorbate/slab} - [E_{adsorbate} + E_{slab}]$. The hydrogen adsorption free energy $(\Delta G_{\rm H})$ was calculated as follows: $\Delta G_{H} = \Delta E_{H} + \Delta ZPE - T\Delta S_{H}$

Figure S1. (a) XRD pattern and (b) SEM images of the precursor NiMoO₄·xH₂O-NF.

Figure S2. The Raman spectrum of N-NiS/MoS₂ heterostructures.

Figure S3. SEM-EDX patterns of N-NiS/MoS $_2$ heterostructures.

Figure S4. XRD patterns of the samples at different calcination temperature.

Figure S5. SEM images of the samples at different calcination temperature: (a) 350 °C, (b) 400

°C, (c) 450 °C, (d) 500 °C, and (d) 550 °C.

Figure S6. (a) XRD pattern and (b) SEM images of NiS₂/MoS₂-NF.

Figure S7. Surface composition and chemical state analyses of (a) N-NiS/MoS₂-NF and (b)

NiS₂/MoS₂-NF. XPS full spectrums.

Figure S8. The LSV plots of N-NiS/MoS₂-NF prepared at different temperatures.

Figure S9. Cyclic voltammograms of (a) N-NiS/MoS₂-NF, (b) NiS₂/MoS₂-NF, and (c) NiMoO₄-

NF in 1.0 M KOH at various scanning rates (from 5 to 30 mV S^{-1}).

Figure S10. (a) XRD and (b) SEM images of N-NiS/MoS₂-NF after stability test.

Figure S11. Calculated density of states for NiS and N-NiS. The Fermi Level is set at 0 eV.

Figure S12. Adsorbed H_2O dissociation configuration on the surfaces of MoS_2 (002) facet and N-MoS₂ (002) facet, as well as corresponding dissociation energies in alkaline solution. Yellow, green, light blue, red and white balls represent S, Mo, N, O and H atoms, respectively.

Figure S13. Chemisorption models of H on the surfaces of (a) NiS (100), (b) N-NiS (100), (c) MoS₂ (002), and (d) N-MoS₂ (002). Yellow, dark blue, green, light blue and white balls represent S, Ni, Mo, N and H atoms, respectively.

Figure S14. (a) Schematic model of N-NiS/MoS₂; (b) Chemisorption models of H on the surfaces of of N-NiS/MoS₂. Yellow, dark blue, green, light blue and white balls represent S, Ni, Mo, N and H atoms, respectively.

Catalysts	Current Density (j mA cm ⁻²)	Overpotential at Corresponding <i>j</i> (mV)	Tafel slope (mV/decade)	Reference
N-CoS ₂ NW/CC	50	152	58	7
MoS ₂ /Ni ₃ S ₂	10	110	83	8
MoS ₂ -Ni ₃ S ₂	10	98	61	9
N-Ni ₃ S ₂ /NF	10	110	-	10
NiS ₂ -MoS ₂	10	204	65	11
MoS ₂ /NiS NCs	10	92	113	12
NiS/MoS ₂ nanoflakes	10	117	58	13
N-Ni ₃ S ₂ /NF	10	155	113	14
Ni-Mo-S nanowire	100	290	103	15
MoS ₂ /NiS yolk–shell microspheres	10	244	97	16
N-NiS/MoS ₂ -NF	10	71	79	This work

Table S1. Comparison of the HER electrocatalytic performance of N-NiS/MoS₂ catalysts with reported transition metals sulfide-based electrocatalysts in alkaline condition.

Table S2. Binding energies of H₂O on NiS and N-NiS substrates in alkaline solution.

	NiS (eV)	N-NiS (eV)
Binding Energies	-10.47	-10.83

Reference

- Y. Y. Chen, Y. Zhang, X. Zhang, T. Tang, H. Luo, S. Niu, Z. H. Dai, L. J. Wan and J. S. Hu, *Adv. Mater.*, 2017, **29**, 1703311.
- 2. B. Delley, J. Chem. Phys., 2000, 113, 7756-7764.
- 3. B. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 5. B. Delley, *Phys. Rev. B*, 2002, **66**, 155125.
- 6. A. Tkatchenko and M. Scheffler, *Phys. Rev. Lett.*, 2009, **102**, 073005.
- P. Z. Chen, T. P. Zhou, M. L. Chen, Y. Tong, N. Zhang, X. Peng, W. S. Chu, X. J. Wu, C.
 Z. Wu and Y. Xie, ACS Catal., 2017, 7, 7405-7411.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X. Feng, Angew. Chem. Int. Ed., 2016, 55, 6702-6707.
- Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catal., 2017, 7, 2357-2366.
- P. Chen, T. Zhou, M. Zhang, Y. Tong, C. Zhong, N. Zhang, L. Zhang, C. Wu and Y. Xie, *Adv. Mater.*, 2017, **29**, 1701584.
- 11. P. Kuang, T. Tong, K. Fan and J. Yu, ACS Catal., 2017, 7, 6179-6187.
- Z. J. Zhai, C. Li, L. Zhang, H. C. Wu, L. Zhang, N. Tang, W. Wang and J. L. Gong, J. Mater. Chem. A, 2018, 6, 9833-9838.
- 13. K. Y. Tao, Y. Gong and J. H. Lin, *Electrochimica Acta*, 2018, **274**, 74-83.
- 14. T. Y. Kou, T. Smart, B. Yao, I. Chen, D. Thota, Y. Ping and Y. Li, Adv. Energy Mater.,

2018, **8**, 1703538.

- 15. Z. Ma, H. Meng, M. Wang, B. Tang, J. Li and X. Wang, *ChemElectroChem*, 2018, **5**, 335-342.
- 16. Q. Qin, L. Chen, T. Wei and X. Liu, *Small*, 2018, 1803639.