Chemically synthesizing anisotropic SmCo₅ nanomagnets with a large

energy product

Zhenhui Ma¹, Jingming Liang¹, Wen Ma², Liying Cong¹, Qiong Wu¹, and Ming Yue^{1*}

¹College of Materials Science and Engineering, Key Laboratory of Advanced Functional

Materials, Ministry of Education of China, Beijing University of Technology, Beijing 100124,

China. E-mail: yueming@bjut.edu.cn

²Grinm Bohan (Beijing) Publisher Ltd., Co., Beijing, 100088, China.

Experimental Procedures

Synthesis of Co₃O₄@Sm₂O₃-CaO: The precursor was synthesized *via* decomposition of cobalt acetate tetrahydrate (Co(Ac)₂·4H₂O), samarium nitrate hexahydrate (Sm(NO₃)₃·6H₂O), calcium nitrate tetrahydrate (Ca(NO₃)₂·4H₂O) with Sm : Co molar ratio of 1 : 3.0. In a typical synthesis, 0.5135 g of Co(Ac)₂·4H₂O, 0.3054 g of Sm(NO₃)₃·6H₂O and 0.5 g of Ca(NO₃)₂·4H₂O were dissolved in mixture solvent which includes 50 ml of deionized water, 50 ml of ethanol, and 15 ml dimethyl formamide (DMF). Then, 0.5 g of polyvinylpyrrolidone (PVP) and 1.0 g of citric acid were added into the system to stabilize the solvent. This system was heated to 70 °C to evaporate all solution to obtain the purple powder. The powder was further annealed at 500 °C for 2 h under air at a heating rate of 2 °C·min⁻¹. When it was cooled to room temperature, the black Co₃O₄@Sm₂O₃-CaO was collected. For the synthesis of Co₃O₄-Sm₂O₃ precursor, it is same as with above process except for the addition of Ca(NO₃)₂·4H₂O.

Synthesis of SmCo₅ particles: For the synthesis of SmCo₅ particles, previously prepared precursor powders were mixed with 0.6 g of calcium (Ca) powders. Subsequently, the mixture was transferred to a steel crucible which was then moved into a steel tube and degassed three times to remove air and moisture. The tube was flushed with Ar and heated to 900 °C at a rate of 8 °C·min⁻¹. The reaction was maintained for 90 min before cooling down to room temperature within 1 h. Afterwards, the sample was washed with NH₄Cl methanol solution in a glovebox under argon atmosphere and collected by a magnet.

Preparation of aligned SmCo₅ nanomagnets: 200 mg SmCo₅ powders were suspended in 10 ml ethanol, and then were mixed with epoxy quickly. The fluid was placed in a cylindrical mold

under a static magnetic field of 22 kOe. After 6 h solidification, the black bulk was obtained. And Φ 3*3 samples were cut from the bulk for further measurement.

Characterization: The crystallographic structure was identified by X-ray diffraction (XRD, D/MAX 2200 PC) with Cu-K_{α} radiation (λ =0.15418 nm). The microstructure and morphology of the above samples were investigated using scanning electron microscopy (SEM, ZEISS - SUPRA55) and transmission electron microscopy (TEM, Tecnai G2 F20). The magnetic properties were measured at room temperature using a Physical Property Measurement System (PPMS) under a maximum applied field of 70 kOe.

Supplemental Data

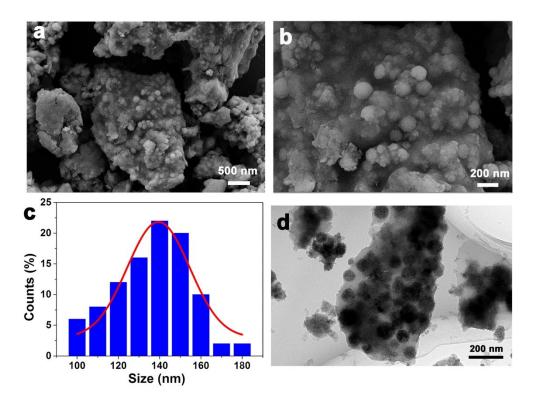


Fig. S1 (a) SEM image of $Co_3O_4@Sm_2O_3$ -CaO; (b) an amplified SEM image of (a); (c) Co_3O_4 particle size distribution histogram from (a); (d) TEM image of $Co_3O_4@Sm_2O_3$ -CaO.

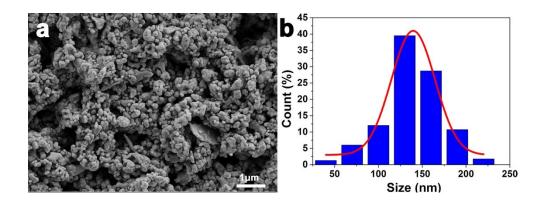


Fig. S2 (a) SEM image of SmCo₅ particles by reductive annealing of Co₃O₄@Sm₂O₃-CaO; (b)

SmCo₅ particle size distribution histogram

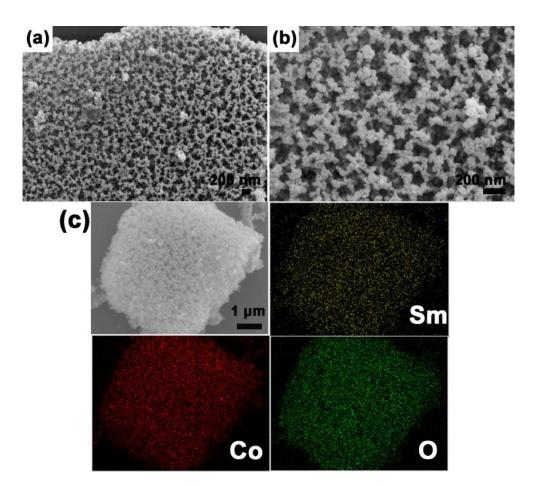


Fig. S3 (a) SEM image of Co_3O_4 - Sm_2O_3 precursor without addition of $Ca(NO_3)_2 \cdot 4H_2O$; (b) an amplified SEM image of (a); (c) Elemental mapping: Sm (yellow), Co (red) and O (green).

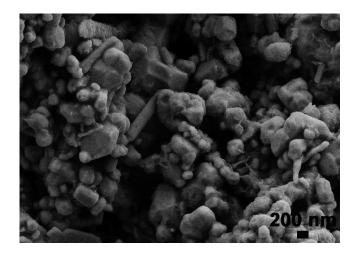


Fig. S4 SEM image of hexagonal $SmCo_5$ particles prepared by reductive annealing of Co_3O_4 - Sm_2O_3 precursor, which exhibit obvious agglomeration and growth without stabilization of CaO.

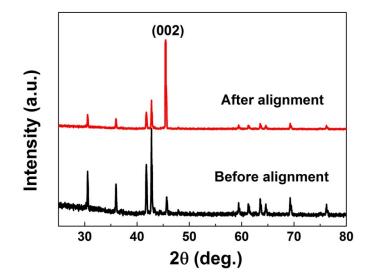


Fig. S5 XRD patterns of $SmCo_5$ prepared by reductive annealing of $Co_3O_4-Sm_2O_3$ before alignment (a) and after alignment (b). The aligned particles show an obvious enhancement at (002) diffraction peak, but there is a certain intensity for other peaks, which implies $SmCo_5$ particles without the protection of CaO represent bonding and are difficult to achieve full orientation.