Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

# **Supporting Information**

# Polarity Control in a Single Transition Metal Dichalcogenide (TMD) Transistor for Homogeneous Complementary Logic Circuits

Jaewoo Shim,‡<sup>a,b</sup> Sung woon Jang,‡<sup>a</sup> Ji-Hye Lim,<sup>a</sup> Hyeongjun Kim,<sup>a</sup> Dong-Ho Kang,<sup>a,c</sup> Kwan-Ho Kim,<sup>a</sup> Seunghwan Seo,<sup>a</sup> Keun Heo,<sup>a</sup> Changhwan Shin,<sup>a</sup> Hyun-Yong Yu,<sup>d</sup> Sungjoo Lee,<sup>e</sup> Dae-Hong Ko,<sup>f</sup> and Jin-Hong Park<sup>\*a,d</sup>

<sup>a</sup> Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea

<sup>b</sup> Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

<sup>c</sup> School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

<sup>d</sup> School of Electrical Engineering, Korea University, Seoul 02841, Korea

<sup>e</sup> SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Korea

<sup>f</sup> Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Korea

<sup>‡</sup> These authors equally contributed to this work. <sup>\*)</sup> Correspondence to Jin-Hong Park (<u>jhpark9@skku.edu</u>)

# AFM image and height profiles of WSe<sub>2</sub>/WTe<sub>2</sub> heterostructure



**Fig. S1.** (a) Atomic force microscope (AFM) image taken on the WSe<sub>2</sub>/WTe<sub>2</sub> heterostructure sample. (b) Thickness of the WSe<sub>2</sub> (top) and the WTe<sub>2</sub> flakes (bottom) corresponding to the yellow lines marked in (a). The scale bar represents 2  $\mu$ m.

The thickness of the WSe<sub>2</sub> and WTe<sub>2</sub> flakes, which were confirmed through AFM analysis, were approximately 8 nm and 30 nm, respectively.



### I-V characteristics of the three different polarity controllable transistors

**Fig. S2.** (a)-(c)  $I_{DS}-V_{GS}$  characteristic curves of the WSe<sub>2</sub>/WTe<sub>2</sub> heterojunction transistor at  $V_{DS}$  = 3 V (red dashed line) and  $V_{DS}$  = - 3 V (blue dashed line).

We carried out current–voltage (I-V) measurements on three different polarity controllable transistors. As shown in Fig. S2, similar electrical characteristics were observed in all of the devices."

Electrical characteristics of WTe<sub>2</sub> at various measurement temperatures.



**Fig. S3.** (a) I-V characteristic curves of WTe<sub>2</sub> at various temperatures (140 K, 210 K, and 300 K). (b) Resistivity of WTe<sub>2</sub> as a function of measurement temperature, which was extracted from the I-V curves.

Two-terminal device was fabricated on the WTe<sub>2</sub> flake to investigate the electrical characteristic of the WTe<sub>2</sub>. Fig. S3a shows the I-V characteristic curves of the WTe<sub>2</sub> device at different temperatures (140 K, 210 K, and 300 K). Then, the resistivity values of the WTe<sub>2</sub> were obtained from the slope of the I-V curves. As shown in Fig. S3b, the resistivity exhibited an increasing tendency with increasing a measurement temperature (i.e., the temperature coefficient of the resistivity was positive, indicating metallic nature of WTe<sub>2</sub>).

#### Electrical characteristics of Pd/WSe<sub>2</sub>/Pd and WTe<sub>2</sub>/WSe<sub>2</sub>/WTe<sub>2</sub> TFTs.



**Fig. S4.** (a) Optical image of WTe<sub>2</sub>/WSe<sub>2</sub>/WTe<sub>2</sub> transistor. (b)  $I_{DS}-V_{GS}$  curves of the Pd/WSe<sub>2</sub>/Pd (gray dotted line) and WTe<sub>2</sub>/WSe<sub>2</sub>/WTe<sub>2</sub> (blue solid line) transistors at  $V_{DS} = -3$  V. The scale bar represents 5 µm.

We fabricated a heterojunction transistor on WSe<sub>2</sub> using WTe<sub>2</sub> as electrodes, as shown in Fig. S4a. Here, the WTe<sub>2</sub> flakes were stacked onto the WSe<sub>2</sub> flake using a mechanical transfer process. Then, Pd/Au layers were deposited via e-beam evaporation to form the contacts for WTe<sub>2</sub>. Fig. S4b shows the electrical characteristics of WTe<sub>2</sub>/WSe<sub>2</sub>/WTe<sub>2</sub> transistor with WTe<sub>2</sub> electrodes (blue solid line) and Pd/WSe<sub>2</sub>/Pd transistor with metal (Pd) electrodes (gray dotted line), where  $V_{DS} = -3$  V. The WTe<sub>2</sub>/WSe<sub>2</sub>/WTe<sub>2</sub> transistor operated at much lower current level (below 10 nA/µm) over the whole gate voltage range, compared to the Pd/WSe<sub>2</sub>/Pd transistor.





**Fig. S5.** (a) Conductivities of WTe<sub>2</sub> with various thicknesses (black symbol). Red dashed line indicates conductivity of Pd. (b,c)  $I_{DS}-V_{GS}$  characteristic curves of the polarity controllable transistors with various WTe<sub>2</sub> thicknesses at (b)  $V_{DS}$  = 3 V and (c)  $V_{DS}$  = - 3 V.

We fabricated various WSe<sub>2</sub>/WTe<sub>2</sub> heterojunction transistors using WTe<sub>2</sub> flakes with different thicknesses (13 nm, 21 nm, 30 nm, and 57 nm), where we used WSe<sub>2</sub> flakes with similar thickness (approximately 10 nm) to minimize the channel thickness effect. We then conducted *I*–*V* measurements in the WTe<sub>2</sub> flakes and the WSe<sub>2</sub>/WTe<sub>2</sub> heterojunction transistors. Similar *I*–*V* and  $I_{DS}$ – $V_{GS}$  characteristic curves were observed in the WTe<sub>2</sub> flakes (Fig. S5a) and the WSe<sub>2</sub>/WTe<sub>2</sub> heterojunction transistors (Figs. S5b and S5c), respectively, regardless of the WTe<sub>2</sub> thickness.

#### Modified thermionic emission current for a heterojunction transistor with WTe<sub>2</sub> electrode.

The thermionic emission current is given by  $J = A^*T^2 \exp(-\frac{q\phi_B}{k_BT})$ , where J is the current density,  $A^*$  is the effective

Richardson constant, T is the temperature, q is the elementary charge,  $\phi_B$  is the barrier height, and  $k_B$  is the Boltzmann constant.<sup>1</sup> The current equation is valid under the assumption that the Fermi energy at absolute zero temperature ( $E_{FO}$ ) is much higher than  $k_B T$  ( $E_{FO} \gg k_B T$ ).<sup>2</sup> Generally, high  $E_{FO}$  is observed in metals with lots of electrons. However, the electrode with relatively low carrier concentration like WTe<sub>2</sub> is expected to have much lower  $E_{FO}$  than metals. Thus, we modified the thermionic emission current equation for the heterojunction transistor using electrodes with low carrier concentration. The modified thermionic emission current based on the Richardson-Dushman equation is given by:<sup>2</sup>

$$J = A^* T^2 \exp(-\frac{q\phi_B}{k_B T}) \exp(\frac{-2\alpha E_{F0}}{k_B}) \exp(\frac{80(\pi k_B T E_{F0})^2 + 7(\pi k_B T)^4}{960 E_{F0}^4})$$
(1)

, where  $\alpha$  is the linear thermal expansion coefficient of WTe22. Here, the EFO is

$$E_{F0} = (\frac{h^2}{2m})(\frac{3n}{8\pi})^{2/3}$$
(2)

, where h is the Planck constant, m is the effective mass of the  $WTe_2$ , and n is the carrier concentration of  $WTe_2$ .

#### References

SZE, S. M. *Physics of Semiconductor Devices*, Wiley: New York, 1981.
De, D. K.; Olawole, O. C. A Three-Dimensional Model for Thermionic Emission from Graphene and Carbon Nanotube. *J. Phys. Commun.* 2019, *3*, 015004.