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1 Raman Measurement of Graphene Thick-
ness

We show that the graphene thickness can be reliably obtained
from Raman intensities1 and these compare accurately with the
thicknesses obtained from x-ray reflectivity. Using an Invia Ren-
ishaw Raman spectrometer with a 514nm laser spot size of 2µm
and power density 2.5× 104W/cm2 in a confocal backscattered
geometry, the SiC 2nd order Raman peak at 1525cm−1 was mea-
sured on several samples. Because of the attenuation of light as it
passes (twice) through each graphene layer, the Raman intensity
is related to the number of graphene layers, N, according to eq.1.

ISiC(N) = v2N (1)

where ν is the transmission through one graphene layer (ν2 =

0.955)2 and the intensity was normalized using a blank SiC ref-
erence sample. Fig. S1 shows excellent agreement with the XRR
results where the Raman thickness is given as N multiplied by the
interlayer spacing of graphene 3.37Å. These thicknesses were also
found to agree with the thicknesses that we also measured by the
attenuation of the Si signal in x-ray photoelectron spectroscopy
(XPS). As compared to XPS, it is noted that the Raman measure-
ments are quicker and easier to perform and are not as limited in
depth (the absorption length of the Raman laser is larger than the
soft x-rays used for the XPS measurements). Samples were also
characterized using XPS after growth. Layer thicknesses were
calculated using the shifted carbon emission spectrum peak in-
tensities and the known attenuation length and atomic sensitivity
factors for graphitic carbon and silicon carbide:

layers = lg/tg× ln(1+ Ig/αg×αSiC/ISiC), (2)

where lg is the attenuation length of graphene, tg is the graphene
layer thickness, Ig and ISiC are the C1s peak intensities of graphitic
carbon and silicon carbide, αg and αSiC are the atomic sensitivity
factor of graphitic carbon and silicon carbide respectively.
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Fig. S 1 shows excellent agreement between the graphene thickness
obtained from the SiC Raman intensity given in eq. 1 and that which was
obtained by XRR (tGr from Tab. 1 of the main text).

2 Description of EXRR Modeling
Here we describe the details of the amplitudes appearing in eq.(1)
of the main text, which result from the different layers shown in
the schematic diagram of Fig. 7 in the main text. The first term
represents the amplitude arising from the semi-infinite C-face 4H-
SiC substrate whereas AB

G(l) and AT
G(l) are the amplitudes arising

from the bottom and top graphene layers, respectively.
The amplitude of a graphene film is constructed from the basic

form of the amplitude for a disordered thin film, as described
elsewhere3:

A = ψ
ξ −1
ψ−1

(3)

where ψ is an average phase factor < eiqd >d from a distribution
of interlayer spacings of graphene, d. Here, we will assume a
Gaussian distribution of these spacings,

ψ = e
− 2(πl∆d)2

c2
SiC e

i2πld
cSiC (4)

where ∆d is the width of the distribution of d-spacings. The fluc-
tuation in the graphene film thickness is described by a binomial
distribution of M discrete layers so that,

ξ = (
N
M

ψ +(1− N
M

))M (5)

where N is the average number of layers in the film and the vari-
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Fig. S 2 shows the best fit (red curves) for sample 33MO6 (symbols) compared to various constraints or modifications (blue curves) of the model that
are associated with the graphene interlayer spacing. The first, second, and third order graphene reflections of the EXRR are shown from left to right in
each of (a)-(c). (a) constrains dB

Gr = dT
Gr and ∆dB

Gr = ∆dT
Gr; (b) constrains dB

Gr = dT
Gr but ∆dB 6= ∆dT ; and (c) switches the stacking of the layers so that the

expanded layer is on top of the thicker layer.
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Fig. S 3 shows the best fit (red curves) for sample 33MO6 (symbols) compared to various constraints or modifications (blue curves) for the model that
are associated with the graphene film thickness. The first, second, and third order graphene reflections of the EXRR are shown from left to right in each
of (a)-(c). (a) requires the bottom and top layers to both start at the substrate rather than be vertically stacked; (b) does not allow for height variations
in the bottom layer; and (c) only allows for a single distribution of heights in the top layer rather than three distributions.
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ance of the layer height-distribution is given as S2 = N(1− N
M ).

In the present case, we find that the graphene films are in the
Poisson limit where M tends to infinity and S2 = N.

The amplitudes for the bottom and top graphene layers are
then constructed from eq.(3) using d = dB

Gr or dT
Gr and ∆d = ∆dB

Gr
or ∆dT

Gr for the bottom and top graphene layers, respectively, for
ψ and ξ . For the bottom graphene layer,

AB
G(l) = ei2πld1st

Gr /cSiC fc(l)(ψB
ξB−1
ψB−1

) (6)

where fc(l) is the atomic form factor of carbon. d1st
Gr accommo-

dates the phase shift due to the distance of the first graphene
layer from the substrate. Because our EXRR measurements had
limited data in between the Bragg positions, our measurements
were relatively insensitive to d1st

Gr . This value was found to vary
between 1.6− 3Å, giving a contraction in the first layer that is
consistent with other studies4.

The top layer was constructed similarly except that a larger
film thickness fluctuation was required and we used a weighted
average of three distributions of graphene layers,

AT
G(l) = ei2πld1st

Gr /cSiC fc(l)ξBψT Σ
3
n=1gn

ξn−1
ψT −1

(7)

where gn describes the weighting of the distributions subject to
Σ3

n=1gn = 1. ξn depends on one of three possible layer heights, Nn,
with n= 1,2,3. The average total thickness of the graphene film is
N = NB +Σ3

n=1gnNn
T and it is reported in Table 3 of the main text.

Because of the Poisson limit, N is also the total variance so that
the graphene roughness is given as σEXRR =

√
Nd.

All parameters in the model were allowed to refine using non-
linear least squares fitting. The resulting fits for three samples are
represented by the red lines in the plots in Fig. 6 of the main text.
In the analysis, ∆d played an important role, both in diminishing
intensity oscillations at the graphene Bragg reflections as well as
in accounting for the intensity ratios between different orders of
reflections. Careful consideration of each of the parameters of the
model was required and these are explored in Figs. S2 and S3,
where the need for these parameters were studied by applying
constraints to the model and comparing to the best fit for sample
33MO6.

To explore the necessity of having a bottom graphene layer that
is different than the top, a fit without a difference in these layers
is shown in Fig. S2(a). Here ratio of intensities among differ-
ent orders of reflection cannot follow the measured values while
there are oscillations (fringes) that are too large in amplitude. In
Fig. S2(b) it can be seen that allowing the ∆d of the two layers to
be different (while still requiring their d values to be the same)
makes a significant improvement in the quality of fit. However,
further significant improvement (red curve in Fig. S2(b)) is ob-
tained by allowing the presence of a thin and slightly expanded
graphene layer that accommodates the intensity shoulder towards
lower q.

We also determined that the expanded thin graphene layer ap-
pears at the bottom rather than on the top of the thicker graphene
layer. Fig. S2(c) shows that if the thin expanded layer is on the

top, there is an overestimation of intensity in the tails of the Bragg
reflections. This problem does not occur when the thin layer is on
the bottom because ∆dB

Gr > ∆dT
Gr allows for a greater attenuation

of the top layer intensity arising from the factor ξB in eq. (7).

We determined that the thin and thick graphene layers cannot
be laterally located next to each other, with both starting at the
substrate rather than being vertically stacked as in Fig. 7 of the
main manuscript. This case is shown in Fig. S3(a) where, similar
to what occurs in Fig. S2(c), there is too much intensity in the
tails of the Bragg reflections because of the lack of attenuation
coming from ξB (with ∆dB

Gr > ∆dT
Gr) that would now be absent

from eq. (7).

Correctly describing the height distributions of the graphene
layers was vital for capturing the shape of the graphene Bragg re-
flections. Fig. S3(b) shows a fit with a perfectly uniform (N = M)
bottom layer while maintaining the height distribution of the top
layer obtained from a best fit. While this seems to work for the
low order reflections, the third order intensity is significantly in
error and the effect of having a smooth interface between the
bottom and top layers is more subtle. In turns out that in or-
der to compensate for a smooth interface in the bottom layer, the
modified fit (blue curve) required larger ∆dB

Gr (it also affects peak
shape) in the bottom layer which then causes too much attenua-
tion at the higher order Bragg reflections. A good fit (red curve)
was obtained in the Poisson limt (M >> N) so that the bottom
layer roughness is given by σB =

√
NBd.

The height distribution of the top graphene layer plays a dom-
inant role in the shape of the Bragg reflections. In Fig. S3(c) the
importance of multiple height distributions in fitting the data is
demonstrated, where it can be seen that a single Poisson distri-
bution cannot adequately describe the data. In particular, strong
oscillations occur in the model that are not present in the data.
Using three distributions, as given in eq. (7), removes these os-
cillations.
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