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Note 1: Dissipative particle dynamics simulation method

In our DPD simulations, the dynamics of elementary units obeys Newton’s law of 

motion. Typically, beads i and j interact with one another via a pairwise additive force 

consisting of the conservative force , dissipative force , and random force . C
ijF D

ijF R
ijF

The total force exerted on bead i can thus be expressed as

.C D R( )i ij ij ij
i j

F F F F


  
   The conservative force  between beads i and j is of a soft repulsion acting C

ijF

along the line connecting the bead centers and has the form

,C
cmax{1 / ,0}ij ij ij ijF a r r r %

where aij is the maximum repulsive strength between beads i and j, rij=rj - ri (ri and rj 

are their positions), =rij /|rij|, and rc is the cut off radius and taken as rc =0.646 nm. In ijr%

the simulations, physical quantities are scaled with the cutoff radius rc, bead mass m, 

and thermal energy kBT with kB as the Boltzmann constant. All simulations were 

performed with the timestep of △t = 16 ps, with the periodic boundary conditions 

adopted in all three directions.
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   According to previous studies,1,2 the values of interaction parameters aij between 

beads of the same type in the pure membrane system were set to = WWa

 and , and those between beads of different types 
H HHH R R 25a a 

T TTT R R 15a a 

were , , and . Detailed values 
TTW R W 80a a 

T H H THT HR R T R R 50a a a a   
TTR 15a 

of the interaction parameters are summarized in Table S1. 

   The dissipative force is determined by the equation

,D 2
c(1 / ) ( )ij ij ij ij ijF r r r v r   % %

where  is the friction coefficient, vij = vi - vj (vi and vj are their velocities). This 

expression conserves the momentum of each pair of interacting beads, and 

consequently the total momentum of the system is conserved.

   The random force between beads i and j is calculated by

,R 2
c(1 / )ij ij ij ijF r r r   %

where  represents the noise amplitude and  is an uncorrelated random variable  ij

with zero mean and unit variance.

   For lipid molecules, the interaction between neighboring beads in the same molecule 

is described by a harmonic spring force, which is given by

,S S eq( )ij ijF K r r r  %

where KS = 128 is the spring constant and req = 0.7 is the equilibrium bond length.

   In order to maintain the bending rigidity of lipids, the force constraining the variation 

of the bond angle is calculated by

 and ,F U   0[1 cos( )]U K     

where  is the equilibrium bond angle,  is the real bond angle, and K = 10.0 is 0   

the bond bending force constant.

   In addition, to represent specific interactions between ligands coating on the NPs and 

active points of receptors embedded in the membrane, a modified truncated LJ 

potential was applied and defined by 

,12 6
LJ =4 ( / ) ( / ) 0.22ij ijU r r      

where rij < rc, λ = 0.624rc, and  represents the strength of the ligand-receptor 

interaction. The largest repulsive force is set to be 10kBT/rc, aiming to ensure the propel 

running of DPD simulations.3-5



Table S1 Interaction parameters (a) used in our simulations

H T RH RT P L W

H 25 50 25 50 25 25 25

T 50 15 50 15 80 80 80

RH 25 50 25 50 25 25 25

RT 50 15 50 15 80 80 80

P 25 80 25 80 25 25 25

L 25 80 25 80 25 25 25

W 25 80 25 80 25 25 25

Note 2: N-varied DPD method

In this work, a specific variant of the DPD method, named the N-varied DPD 

simulation method, was applied to simulate the membrane interaction with NPs. In this 

method, the targeted membrane tension can be maintained constant by adjusting the 

lipid number per area (LNPA) in the membrane boundary region serving as a lipid 

reservoir.6-8 By adding and removing lipids, the value of LNPA in the boundary region 

is kept within a desired range ( ). To keep the overall average min max
LNPA LNPA LNPA   

density of beads in the simulation box constant, water beads are added into or deleted 

from the box correspondingly. Each addition or deletion move is performed every 1500 

steps to leave enough time for the propagation of the membrane tension to the whole 

membrane.

Note 3: Determination of the membrane configurations in theoretical model

In our theoretical modeling, the membrane configuration is fully characterized by the 

tangent angle ψ with geometrical relations  and , and the d / d cosr s  d / d sinz s 

minimum energy state of the vesicle at each given wrapping degree f and NP distance d 

can be expressed as . Here we further introduce two new variables 1 2( , , )E E   

 ( , i = 1, 2) with l1 and l2 as the total lengths of the inner and outer /i i it s l [0,1]it 

free membranes, respectively, and reparametrize the unknown variables ψi(si) as 

 (j = 0,1,…,ni) based on cubic B-spline approximation. Here the ( ) ( )( ) ( )i i
i i j j it a N t

control points  are the coefficients of the basic functions . ( )i
ja ( ) ( )i

j iN s



   We employ the interior point optimization technique to numerically determine the 

minimum state of the membrane elastic energy at given f and d. The required boundary 

conditions are as follows. In the case of two cylindrical NPs adhering on the same side 

of the membrane, we have  and  at  due to the symmetric 0r z  1 0  1 0t 

membrane configuration; while in the case of two cylindrical NPs adhering on the 

opposite membrane sides, we have  and zero membrane curvature ( ) at 0r z  1 0&

 (point O) due to the antisymmetric membrane configuration. At the remote 1 0t 

boundary ( ), we have  and . Other mandatory conditions are 2 1t  0z  2 0 

continuities of the r-coordinate and tangent angle ψ at two contact edges. To 

approximate the remote condition , the total length l2 of the outer membrane 2l 

region is determined by a large prescribed length of the membrane projection of 20a. 

Under these conditions, the system free energy E at given f and d is minimized with 

respect to , li, and α, and the corresponding membrane configuration could be ( )i
ja

determined.

Note 4: Supplementary simulation results

Fig. S1 Time sequences of typical snapshots and evolutions of the NP distance for two 
identical NPs of diameter D = 6.5 nm at an initial distance of 13 nm but different 
receptor-ligand interaction strength ε.



Fig. S2 Equilibrium wrapping configurations as functions of the NP distance and 
receptor-ligand binding strength. (A-C) Typical snapshots from top and side views 
showing three representative membrane wrapping states. (D, E) Phase diagrams of 
wrapping states for two NPs of diameter D = 6.5 nm (D) and 3.5 nm (E) at different NP 
distances and receptor-ligand binding strengths. Symbols representing the wrapping 
states are illustrated in A-C. The density of ligands on the NP surface is decreased to 
25% of that in Fig. 2 in the main text.

Fig. S3 Time evolution of the distance between two identical NPs weakly adhering on 
the membrane. The NP diameter is D = 3.5 nm and the receptor-ligand interaction 
parameter is ε = 3.5 kBT. Four typical snapshots at different time are presented in the 
right panel to demonstrate the NP movement on the membrane.



Fig. S4 Time evolutions of the wrapping degree for two NPs of D = 6.5 nm at ε = 5.0 
kBT and two different initial NP distances (d = 9.4 nm and 17.2 nm). Insets show 
representative snapshots and the evolution of the NP distance in the time range 
between 2.5 μs and 4.0 μs.

Fig. S5 The effect of adhesion strength on the wrapping process of two NPs at opposite 
sides of the membrane. (A-D) Time sequences of typical snapshots of the membrane 
wrapping processes at ε = 3.0 kBT (A), 4.0 kBT (B), 5.0 kBT (C) and 8.0 kBT (D). 
Corresponding time evolutions of the average membrane wrapping degree (E) and NP 
distance (F). The initial NP distance was set to be 20.7 nm.



Fig. S6 The effect of the initial NP distance on the membrane wrapping of two NPs 
with diameter D = 6.5 nm at opposite membrane sides. (A-C) Time sequences of 
typical wrapping snapshots with initial NP distances as 0 nm, 13.8 nm, and 20.7 nm, 
respectively. (D) Time evolutions of the degree of membrane wrapping around each 
NP. NPs at shorter initial distances are wrapped by the membrane with a higher extent 
due to the cooperative effect. (E) Time evolutions of the NP distance. The receptor-
ligand interaction strength was set as ε = 3.0 kBT.



Fig. S7 Effect of the membrane tension on the membrane wrapping of two NPs from 
opposite sides of the membrane at ε = 5.0 kBT. (A-C) Time sequences of typical 
snapshots at fixed lipid surface densities of 1.7 (A), 1.65 (B) and 1.60 (C). Time 
evolutions of the average membrane wrapping degree (D) and NP distance (E) at 
different lipid densities. The NP diameter and initial NP distance are D = 6.5 nm and d 
= 20.7 nm, respectively.



Fig. S8 Effect of membrane tension on the membrane wrapping of two NPs from 
opposite sides of the membrane at ε = 8.0 kBT. (A-C) Time sequences of typical 
snapshots at fixed lipid surface densities of 1.7 (A), 1.65 (B) and 1.60 (C). Time 
evolutions of the average membrane wrapping degree (D) and NP distance (E) at 
different lipid densities. The NP diameter and initial NP distance are D = 6.5 nm and d 
= 20.7 nm, respectively.



Fig. S9 Equilibrium NP arrangements at different initial NP distances and NP-
membrane adhesion strengths. Under each condition five independent simulations were 
performed.



Note 5: Supplementary theoretical results

Membrane wrapping of two cylindrical NPs at the opposite membrane sides

Fig. S10 Energy and force profiles for the membrane wrapping of two cylindrical NPs 
at the opposite membrane sides. (A) The system elastic deformation energy ED/κ (at γ 
= 0) and (B) difference of local membrane force ΔFrD2/κ between the inner free and 
outer free membranes in the r-direction as functions of the wrapping degree f and NP 
distance d/D. Insets: corresponding contour plots. The membrane tension 

 is considered here. 20.2 / D 

Fig. S11 The system elastic deformation energy ED/κ at zero adhesion energy as 
functions of the wrapping degree f at  and different NP distance d/D in the 26 / D 
case of the wrapping of two cylindrical NPs at the opposite membrane sides. Symbols 
on the curves represent the full wrapping states.



Fig. S12 Wrapping degree f at different adhesion energy γ in the cases of 
 (A) and  (B) for the wrapping of two cylindrical NPs at the 20.2 / D  26 / D

opposite membrane sides. Here  and .2 /D   2 /D  

Membrane wrapping of two cylindrical NPs at the same membrane side

   For the wrapping of two identical cylindrical NPs of diameter D at the same 

membrane side, the system energy and interaction force are basically the same as these 

used for the wrapping of NPs at the opposite membrane sides (see subsection 2.2 in the 

main text). At d > D, the elastic deformation energy decreases slowly as d increases at 

a given f (Fig. S13A). The local membrane force  is negative and drives NPs away rF

from each other (Fig. S13B), indicating a repulsive NP interaction. 

Fig. S13 (A) The system elastic deformation energy ED/κ (γ = 0) and (B) difference of 
local membrane force between the inner free and outer free membrane in the r-
direction ∆FrD2/κ as functions of the wrapping degree f and NP distance d/D. Insets: 
corresponding contour plots. Here  is considered. 26 / D 



   Selected membrane configurations at  are shown in Fig. S14. In the case 26 / D 

of , the wrapping of two separated NPs is smooth in the early wrapping / (1, 2)d D

stage, followed by a discontinuous configurational transition with the shallow 

wrapping state abruptly jumping to a deep wrapping state (as demonstrated in Fig. 

S14A from f = 0.3 to f = 0.6). This discontinuous configurational transition occurs 

around f = 0.5 and is reflected by the kinked red line in Fig. S15. Eventually two NPs 

reach a full wrapping state around f = 0.9 in which the outer free membranes touch the 

inner free membrane. The smooth blue short dash line in Fig. S15 means that the 

wrapping process is continuous at d/D = 2.

Fig. S14 Selected membrane configurations at different f and d in the cases of 
. Arrows at the NP centers represent the interaction force  due to the 26 / D  rF

membrane deformation with the force values listed on the right sides. A negative  rF
indicates repulsive NP interaction.



Fig. S15 The system elastic deformation energy ED/κ at γ = 0 as functions of the 
wrapping degree f at  and different NP distance d/D. Symbols on the 26 / D 
curves represent the full wrapping states.

Fig. S16 Total free energy E (A) and wrapping degree f (B) at  and different .6  

   At a given adhesion energy γ, the total free energy E decreases as the NP distance 

d/D increases (Fig. S16A), indicating a repulsive NP interaction. The evolution of the 

wrapping degree f as a function of d/D is shown in Fig. S16B. 
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