Supporting Information

Electrospun VSe_{1.5}/CNFs composite with excellent performance for alkali metal ion batteries

Lihong Xu‡^a, Peixun Xiong[‡]^b, Lingxing Zeng^{*a, c, e}, Yixing Fang^a, Renpin Liu^a, Junbin Liu^a, Fenqiang Luo^{a, c}, Qinghua Chen^{a, d, e}, Mingdeng Wei^b, and Qingrong Qian^{*a, c, e}

^a Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China. EMAIL: zenglingxing@fjnu.edu.cn; qrqian@fjnu.edu.cn; Tel: +86-591- 83465156

^b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China.

^c Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China.

^d Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China.

^e Chemistry Post-Doctoral Station, Fujian Normal University, Fuzhou, Fujian 35007, China.

Fig. S1 TG cures of the bulk $\mathsf{VSe}_{1.5}$ and $\mathsf{VSe}_{1.5}/\mathsf{CNFs}$ composite.

Table S1 Electrochemical performance comparison of the as-prepared VSe_{1.5}/CNFs with other V-based anode materials for LIBs/SIBs/KIBs.

Electrode	Fields	Cycling capacity	Rate capability	Year/Ref.
materials		(mA h g ⁻¹)	(mA h g ⁻¹)	
VSe₂ NSA/C	LIBs	768	571	
		(50cycles /0.1 A/g)	(2 A/g)	2018/[S1]
	SIBs	571	450	
		(50 cycles /0.1 A/g)	(0.5 A/g)	
VSo ultrathin papachoots	PIBs	366	169	2018/[S2]
		(200 cycles /0.1A/g)	(500 cycles /2 A/g)	
	PIBs	~230	134	2018/[S3]
V ₂ O ₃ @PINCINFS		(500 cycles /0.05A/g)	(1.0 A/g)	
	LIBs	587	219	2017/[S4]
V.O. (carbon		(200 cycles /0.1 A/g)	(2 A/g)	
V ₂ O ₃ /Carbon	SIBs	270	~150	
		(150 cycles /0.1 A/g)	(1000 cycles /1 A/g)	
V S graphito	SIBs	496	344	2017/[S5]
v ₅ 38-graphile		(500 cycles /1 A/g)	(10 A/g)	
VS papashaats	SIBs	620	277	2018/[S6]
		(50 cycles /0.1 A/g)	(20 A/g)	
c-VS₂@VOOH	SIB	330	356	2017/[\$7]
		(150 cycles /0.2 A/g)	(0.5 A/g)	
			224	
			(1 A/g)	
VS ₂	SIB	403	193	2018[58]
		(200 cycles /0.2 A/g)	(0.5 A/g)	
			172	
			(1 A/g)	
VSe _{1.5} /CNFs	LIBs	821	932	This work
		200 cycles /0.5 A/g)	(400 cycles /1 A/g)	
	SIBs	668	265	
		(50 cycles /0.05 A/g)	(6000 cycles /2 A/g)	
	PIBs	313	177	
		(40 cycles /0.1 A/g)	(100 cycles /1 A/g)	

Ref.

S1 F. Ming, H. Liang, Y. Lei, W. Zhang and H. N. Alshareef, *Nano Energy*, 2018, **53**, 11-16.

S2 C. Yang, J. Feng, F. L, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li and S. Guo, Adv. Mater., 2018, 30, 1800036.

S3 T. Jin, H. Li, Y. Li, L. Jiao and J. Chen, Nano Energy, 2018, 50, 462-467.

S4 X. An, H. Yang, Y. Wang, Y. Tang, S. Liang, A. Pan and G. Cao, Sci. China Mater., 2017, 60, 717-727.

S5 C. Yang, X. Ou, X. Xiong, F. Zheng, R. Hu, Y. Chen, M. Liu and K. Huang, Energy Environ. Sci., 2017, 10, 107-113..

S6 D. Yu, Q. Pang, Y. Gao, Y. Wei, C. Wang, G. Chen and F. Du, Energy Storage Mater., 2018, 11, 1-7.

S7 W. Li, J. Huang, L. Feng, L. Cao, Y. Feng, H. Wang, J. Li and C. Yao, J. Mater. Chem. A, 2017, 5, 20217-20227.

S8 W. Li, J. Huang, L. Feng, L. Cao, Y. Liu and L. Pan, *Electrochim. Acta*, 2018, **286**, 131-138.

Fig. S2 SEM images of VSe_{1.5}/CNFs electrode (a-b) before cycling and (c-d) after 100 cycles at 200 mA g⁻¹ for sodium storage.

Fig. S3 Nyquist plots of VSe $_{1.5}$ /CNFs electrode after different cycles for SIBs.

Sample	Rs (Ω)	Rf (Ω)	Rct (Ω)
Pristine	19.5	746.9	303.8
100th	19.6	298.2	252.4

Table S2 Impedance parameters calculated from an equivalent circuit model.

Fig. S4 (a) Cyclic voltammentry curves of VSe_{1.5/}CNFs electrode for PIBs at different scan rates of 0.1, 0.2, 0.5, 1, 1.5 and 2.0 mVs⁻¹. (b) log (*i*) vs. log (v) plots at different oxidation and reduction peaks. (c) Capacitive contribution (purple area) of VSe_{1.5/}CNFs at 0.5 mV s⁻¹. (d) The diffusion controlled (white) and capacitive (purple) capacities of VSe_{1.5/}CNFs at different scan rates.