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Supplementary Fig. 1 – a-e Berry curvature plot for bilayer graphene at different negative electric fields. The Berry
curvature at both K and K′ high symmetry points does not show any sign change with the increase in the electric
field. The increase in the magnitude of the Berry curvature is the result of growing asymmetry in the system with

the increase in electric field strength.
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Supplementary Fig. 2 – The magnitude of the Berry curvature at both K and K′ valleys for different negative
out-of-plane electric fields.
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Supplementary Fig. 3 – Berry curvature calculated at different positive electric fields using QUANTUM
ESPRESSO (see Methods, Supplementary Information). a As observed in the calculations performed using SIESTA
(Fig. 2a, main text), a non-zero Berry curvature with opposite values at K and K′ valleys is observed, validating the

argumentation of inbuilt inter-layer charge asymmetry persistent in neutral bilayer graphene as a result of charge
transfer. b The increase in the electric field reduces the magnitude of the Berry curvature and hence the charge

asymmetry. c Further increase in the magnitude of the electric field reverses the polarity of the Berry curvature at
both K and K′ valleys. This implies that the charge asymmetry shifts to the opposite layer beyond a threshold

electric field. d Increasing the electric field strength beyond the threshold electric field increases the magnitude of
the Berry curvature as a consequence of the increase in charge asymmetry.
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Supplementary Fig. 4 – Berry curvature plotted in the 2D k-space a for 1 V/nm, b for 2 V/nm, and c for 3 V/nm.
At higher electric fields, the Berry curvature delocalizes and spreads across the 2D k-space with the increase in the

strength of the applied out-of-plane electric field.
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Supplementary Note 1

Berry curvature for the nth band is defined as

Ωn(k) = i
~2

m2

∑
n 6=n′

〈un,k| p̂ |un′,k〉 × 〈un′,k| p̂ | 〉un,k
[εn − εn′ ]2

(1)

where, p̂ is the momentum operator, |un,k〉 is the periodic part of the Bloch function and εn is the energy of the nth

Bloch band. The summation runs over all the bands including the un-occupied bands. The total Berry curvature is
the sum over all the occupied bands, i.e.,

Ω(k) =
∑
n

fnΩn(k) (2)

where fn is the Fermi-Dirac distribution.
But taking the derivative of the periodic part of the Bloch function (Eq. (1)) makes the calculation cumbersome.

Thus we rely on the more accurate Wannier interpolation scheme, where the Berry curvature, calculated in terms of
the Wannier functions [1] using finite differences is defined as,

Ω(k) =
∑
n

fnΩ
H

nn +
∑
n,m

(fm − fn)DH
nm ×A

H

nm + ΩDD (3)

where O
H

= U†OWU represent the components which transform covariently from Wannier gauge (W ) to Hamiltonian

gauge (H ) under unitary transformation U ; and DH
nm = (U†∇HWU)nm

εm−εn (1− δnm). The last term is defined as

ΩDD =
i

2

∑
n,m

(fn − fm)
(U†∇HWU)nm × (U†∇HWU)nm

(εm − εn)2
(4)

Here, HW is the Hamiltonian in Wannier representation and εn is the energy of the nth band.
The summation runs over all the Wannier states, which is, all the occupied and two un-occupied states in our case.

The term (fn − fm) in Eq. (4) tells that a pair of occupied states or un-occupied states have negligible contribution
to the total Berry curvature. Thus, a pair of bands, one of them occupied and another one un-occupied contribute
extensively to the total Berry curvature. In that case, εm and εn are the energies of these occupied and un-occupied
valleys respectively. Hence increasing the band gap results in the decrease in total Berry curvature because Berry
curvature is inversely proportional to the square of the energy difference between conduction band minimum and
valence band maximum.
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Supplementary Fig. 5 – Band structure calculations for AA-stacked bilayer graphene near the Fermi level around
the K valley a for 0 V/nm b for 1 V/nm c for 2 V/nm d for 3 V/nm. No band gap opening was observed in spite of
the application of an out-of-plane electric field which induces a potential difference between the layers. This signifies

that the layer symmetry in AA-stacked bilayer graphene remains unaltered regardless of the application of an
out-of-plane electric field.
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Methods
Ab initio calculations are performed using QUANTUM ESPRESSO [2] which uses plane-wave basis. PBE exchange-

correlation functional [3] which employs Generalized Gradient Approximation (GGA) is used all the calculations. A
norm-conserving pseudo-potential with kinetic energy cutoff for wave functions of 80 Ry is used (320 Ry for charge
density cutoff). In order to procure optimum interlayer distance between the two graphene layers, semi-empirical
Grimme’s DFT-D2 [4] van der Waals correction is employed. The Berry curvature calculations are performed using
the WANNIER90 package which follows the Wannierization procedure [5]. A total of 10 Wannier functions are constructed
on a fine Monkhorst-Pack grid of dimension 72 x 72 x 1. In the disentanglement procedure, the Wannier spread is
converged down to 10−10 Å2 in less than 600 iterations.
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